好文溜溜 >教案

酸的性质教案8篇

没有教案的课堂是无法活跃起来的,只有学会制定生动有趣的教案,同学们才会对课堂产生兴趣,很多教师为了让自己的教学效果达到最佳,都是会提前写好教案的,好文溜溜小编今天就为您带来了酸的性质教案8篇,相信一定会对你有所帮助。

酸的性质教案8篇

酸的性质教案篇1

教学内容:

人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:

理解比的基本性质

教学难点:

正确应用比的基本性质化简比

教学准备:

课件,答题纸,实物投影。

教学过程:

一、 复习引入

1.师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2.你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3.你还记得分数的基本性质吗?举例说明。

?设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2.学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

?设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1.教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3.全班验证。

16:20=(16○□):(20○□)。

4.完善归纳,概括出比的基本性质。

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善板书。

(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

5.质疑辨析,深化认识。

?设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

三、比的基本性质的应用

师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

(一)理解最简整数比的含义。

1.引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

2.从下列各比中找出最简整数比,并简述理由。

3:4; 18:12; 19:10; ; 0.75:2。

(二)初步应用。

1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

学生独立尝试,化简后交流。

(1)15:10=(15÷5):(10÷5)=3:2;

(2)180:120=(180÷□):(120÷□)=( ):( )。

预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。

2.化简前项、后项出现分数、小数的比。(课件出示)

师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像 : 和0.75:2,

这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

4.方法补充,区分化简比和求比值。

还可以用什么方法化简比?(求比值)

化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

5.尝试练习。

把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

32:16; 48:40; 0.15:0.3;

?设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

四、巩固练习

(一)基础练习

1.教材第53页第4题。

把下列各比化成后项是100的比。

(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。

(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

(3)某企业去年实际产值与计划产值的比是275万:250万。

2.教材第53页第6题。

(二)拓展练习(ppt课件出示)

学生口答完成。

1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。

2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )

?设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

五、课堂小结

这节课你有什么收获?还有什么疑问?

小学六年级数学《比的基本性质》教学设计教案二

一、创设情境,导入新课

1、提问

师:除法、分数和比之间有什么联系?

2.做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

3.导入课题:

我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

二、学习新课

1.教学例3比的基本性质。

(1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

(3)师生共同总结比的基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

(4)师:你觉得哪些词语比较重要? 0除外你怎样理解得?

2.教学例4应用比的基本性质化简比。

我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

出示:把下面各比化成最简单的整数比

(1)12:18 (2) (3)1.8:0.09

(1)让学生试做第(1)题

师:你是怎么做的?6和12、18有着怎样的关系?

引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

(2)化简 (2)

师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

(3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

(4)化简(3)1.8:0.09

师:想一想如何化简小数比呢?

让学生独立在书上化简,指名板演

师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

三、巩固练习

1.练一练,填完整

2.做练习十三第5-8题。

3.补充练习

选择

1.1千米∶20千米=( )

(1)1∶20 (2)1000∶20 (3)5∶1

2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )

(1)20∶21 (2)21∶20 (3)7∶10

四、课堂小结

师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

小学六年级数学《比的基本性质》教学设计教案三

教学内容:

教科书第50、51页的内容,做一做,练习十一第4-6题。

教学目标:

1、掌握比的基本性质,能根据比的基本性质化简比。

2、联系商不变的性质和分数的基本性质迁移到比的基本性质。

教学重点:

理解比的基本性质。

教学难点:

能应用比的基本性质化简比。

教学过程:

一、激趣定标

1、20÷5=(20×10)÷( × )=( )

2、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。

二、自学互动,适时点拨

?活动一】比的基本性质

学习方式:小组合作、汇报交流

学习任务

1、启发诱导,发现问题:6:8和12:16这两个比不同,可是它们的比值却相同,这里面有什么规律呢?。

6:8=6÷8=6/8=3/412:16=12÷16=12/16=3/4

2、观察比较,发现规律。

(1)利用比和除法的关系来研究比中的规律。(商不变的规律)

(2)利用比和分数的关系来研究比中的规律。

3、归纳总结,概括规律。

(1)总结:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

(2)追问:这里“相同的数”为什么要强调0除外呢?

?活动二】化简比

学习方式:尝试训练、汇报交流

学习任务

1、认识最简单的整数比。

(1)提问:谁知道什么样的比可以称作是最简单的整数比?

(2)归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。

(3)指出几个最简单的整数比。

2、运用性质,掌握化简比的方法。

(1)分别写出这两面联合国国旗长和宽的比。

(2)思考:这两个比是最简单的整数比吗?为什么?(前项和后项除了公因数1还有其他的公因数。)

(3)尝试化简。

(4)汇报交流:只要把比的前、后项除以它们的公因数。

(5)想一想:这两个比化简后结果相同,说明了什么?(这两面旗的大小不同,形状相同。

(6)出示例题,组织交流

①乘分母的最小公倍数:1/6:2/9=(1/6×18):(2/9×18)=3:4

②前后项先化成整数,再化简:0.75:2=(0.75×100):(2×100)=75:200=3:8

③用分数除法的方法计算:1/6÷2/9=1/6×2/9=3/4

(7)小结:如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。

三、达标测评

1.完成课本第51页的“做一做”,集体订正。

2、完成课本第52页练习十一的第2、4、5、6题。

四、课堂小结

这节课我们学习了什么?你有什么收获?

酸的性质教案篇2

教学目标:

1.掌握小数的性质,会应用小数的性质化简改写小数。

2.培养学生合作能力和口语表达能力。

3.体验学习数学的乐趣。

教学重难点:

引导学生积极探索,发现并理解小数的性质。

教学过程:

一.激趣引入:

出示1 10 100

师:这几个数熟悉吗?(熟悉),今天就让我们用100分的热情,10分的认真,上1节快乐的数学课。你们能做到吗?(能)。上课

1.提出问题:

首先,李老师想请你们来当小裁判,有两位同学发生了这样一件事:(看大屏幕)

小方:我买了一个本子,用了0.30元

小雨:我买了这样一个本子,只花了0.3元,比你便宜

小方:不对,我们俩花的钱同样多

2.引发猜想:

师:你们来当当裁判,他们谁说的对?

生:小方说的对。

师:0.3=0.30(板书在黑板上)

二.自主互助

引导学生验证探索理解小数的性质

我们学数学要有理有据,那么,你们的猜想0.3=0.30,对不对,还需要你们进行验证。

1.小组合作验证猜想:(明确要求)

a.选择一种你认为最拿手的方法验证。

b.要求分工明确

2.小组汇报:

a涂格子的的方法验证。

师:你们的方法真好,利用图形来验证,形象直观.

b用长度单位来验证。

0.3米=(3/10)米=(3)分米

0.30米=(30/100)米=(30)厘米=(3)分米

师:你们的结论是0.3米=0.30米。单位相同都是米。

所以0.3=0.30.

你们用常用的长度单位来验证再一次证明了0.3=0.30,还有其他的方法吗?

c用人民币的单位验证。

0.3元=(3)角

0.30元=(30)分=(3)角

师:你们用熟悉的钱数来验证,简洁好想,真不错。

d.拓展发现:(还能写出这样的一组数)

0.300米=(300)毫米=(30)厘米

结果:0.3=0.30=0.300

生:在小数的末尾添上“0”或去掉“0”,小数的大小不变。

生:板书.师补充课题《小数的性质》

师:这句话中,你认为哪个词是关键词,“末尾”。为什么?

3.合作结论:小数的末尾添上“0”或去掉“0”,小数的大小不变。(再读一遍)

三.快乐闯关

第一关:下面各数末尾添上“0”后,发生了哪些变化?同桌之间互相说一说。说说你发现了什么?

18 0.06 3.0 120 700 10.01

第二关:下面的数如果末尾添上“0”,哪些数的大小不变?哪些数的大小会变?

3.4 150 9.08 104.03

31.00 42.1 52.01 35

第三关:判断

1、12.8和12.80的大小一样,但计数单位不一样。()。

2、在小数上添“0”或去掉“0”,小数的大小不变。()

3、908的未尾添上两个“0”,数的大小不变。()

第四关:化简下面各数

0.40 1.8500 2.900

0.080 12.000 0.020

第五关:不改变数的大小,把下面各数写成三位小数。

0.9 30.04 5.4 8.18 14

四. 总结:

1.说说你的收获。

2.评价一下自己和你的伙伴。

五.板书设计:

小数的性质

小数末尾添上“0”或者去掉“0”,小数的大小不变。

酸的性质教案篇3

教学目标:

【知识与技能】

1.通过观察比较,知道小数部分的末尾添上0或去掉0,小数的大小不变。

2.能运用小数的性质,对小数进行改写和化简。

【过程与方法】

1.通过先独立思考,再小组讨论的教学手段,让学生经历自主探索的过程。

2.用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。

3.引导学生初步领略解题过程中常用的转化的方法。

【情感、态度与价值观】

1.经历验证的过程,培养合理的思维。

2.培养培养学生发散性思维能力。

教学重点:

小数性质的应用。

教学难点:

小数性质归纳的过程。

教学用具准备:

教具、学具、多媒体设备。

教学过程设计:

一、情景引入

1.

板书:三个1,判断相等吗?

接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,问:这三个数相等吗?(不相等)

你能想办法使它们相等吗?(添上长度单位米、分米、厘米或分米、厘米、毫米)

1米=10分米=100厘米 1分米=10厘米=100毫米。

2.(1)你能把它们改用米作单位表示吗?

0.1米=0.10米=0.100米

(2)改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)

3.引入新授:0添在一个数的哪里可以不改变数的大小呢?这节课我们就来研究这一方面的知识。

[灵活运用学生学过的知识,从中找到三个相等的数量,发现问题,从而揭示课题]

二、探究新知

1.出示例1:比较0.30与0.3的大小。

(1)你认为这两个数的大小怎样?(让学生先猜一猜)

(2)可以用什么办法来证明?(给学生独立思考的时间,可以进行小组讨论合作,老师提供两个大小一样的正方形,数射线)

学生汇报:

0.3就是, 把这个正方形看作整数1,这个正方形平均分成了10份,取这样的三份,就是, 0.30就是,把另一个正方形平均分成了100份,取这样的30份,就是,从图形上发现,所以 0.3=0.30。

推算10个0.01是0.1

30个0.01是0.3

所以0.3=0.30

把0.3和0.30标在数射线上,发现0.3=0.30。

(3)从比较中中发现了什么?

(小数部分的末尾(后面)添零,它的大小不变。小数部分的末尾(后面)去掉零,它的大小不变。)末尾和后面哪个更好?

(4)这就是今天我们要学习的小数的性质。(出示课题:小数的性质)

板书:小数部分的末尾添上0或去掉0,小数的大小不变。

2.利用小数的性质举例。

[通过先独立思考,再小组讨论的教学手段,用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。]

三、巩固练习

1、根据小数的性质,遇到小数末尾有0的时候,一般可以去掉末尾的0,这过程就是把小数化简。

利用小数的性质化简下面各小数:

6.0=( ) 3.500= ( ) 3.340=( )

这样做的根据是什么?(把小数末尾的0去掉,小数的大小不变)

2、判断:不改变小数大小,下面哪些0可以去掉,哪些0不可以去掉?

0.730 36.070 108.800 10.0

3、有时根据需要,利用小数的性质来改写小数。

不改变大小,把下面各数改写成三位小数

8.01= 9.8= 6=改写小数时你想提醒同学们需要注意什么?

(1)不改变原数的大小;

(2)只能在小数的末尾添上0;

(3)把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0。

4、当小数部分的位数不同时,可以怎么比较小数的大小?

比较3.14与3.141

(把3.14改写成3.140,就可以从高位起依次比较每个数位上的数字。01所以3.143.141)

比较下面每组中两个小数的大小:

5.28( )5.2 0.61( )0.612 6.37( )6.375

[通过一系列练习,使学生明确了小数性质的两大运用:把小数改写和化简。]

四、课堂小结

今天我们学习了什么?

生活中你有没有用到过小数的性质?(价格标签)

酸的性质教案篇4

一、教学过程

(一)引入新课

1.同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

2.揭示课题:小数的意义与读写(板书:小数的意义与读写)

(二)展示目标(见教学目标1)

二、自主学习

(一)出示自学提纲

自学提纲(自学教材p50页例1,并完成自学提纲问题,将不会的问题做标注)

1.把1米平均分成10份,每份是多少米?3份呢?

2.分母是10的分数可以写成几位小数?

3.把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

4.思考什么是分数?什么是小数?

(二)学生自学(学生对照自学提纲,自学教材p49页例1,并完成自学提纲问题,将不会的问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1.解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题并解决。

(2)教师引导学生解决学生还遗留的问题。

2.交流小数的意义。

(1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

(2)抽象。概括小数的意义。

把1米看成一个整体,如把一个整体平均分成10份。100份。1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几。百分之几。千分之几这样的分数表示。

(3)什么叫小数?引导学生讨论。

(4)师生共同概括:

分母是10.100.1000……的分数可以写成小数,像这样用来表示十分之几。百分之几。千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

3.交流小数的计数单位。

四、达标训练

1.填空。

(1)0.1是( )分之一,0.7里有( )个0.1。

(2)10个0.1是( ),10个0.01是( )。

(3) 写成小数是( ), 写成小数是( )。

2.课本做一做。

3.判断:

(1)0.40里面有4个0.01。( )

(2)35克=0.35千克 ( )

4.把小数改写成分数。

0.9 0.09 0.0359

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

五、堂清检测

(一)出示堂清检测题。

1.填空题。

(1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

(2)小数点右边第二位是( ),计数单位是( )。

(3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

(4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

(5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

2.读出下面各数。

0.78 5.7 0.307 8.005 6600.506 88.188

3.写出下面各数。

零点一二 七点七零七 二十点零零零九

四千点六五 零点九一八 五十三点三五三

(二)堂清反馈:

布置作业

教材p55页 1.2.3题。

板书设计

小数的意义与读写

十分之一---------------- 0.1

百分之一----------------0.01

千分之一----------------0.001

分母是10.100.1000……的分数可以写成小数,

像这样用来表示十分之几。百分之几。千分之几……的

数叫做小数。

酸的性质教案篇5

设计说明

1、注重情境创设,激发学生的学习兴趣。

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的。接着教师提问设疑,导入新课。

2、突出学生的主体地位,在实践操作中掌握新知。

学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

课前准备

教师准备ppt课件

学生准备若干张同样大小的圆形纸片、彩笔

教学过程

一、故事引入

1、教师讲故事。

师:老师给大家讲一个分饼的故事,你们想听吗?三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

大毛、二毛、三毛都满意地笑了,妈妈也笑了。

设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

2、探究验证。

(1)提出猜想。

师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

生:同样多。

师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

(2)验证猜想。

请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

③剪一剪:把圆形纸片中的涂色部分剪下来。

④比一比:把剪下的涂色部分重叠,比一比。

师:通过比较,结果是怎样的?

生:同样大。

设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

3、揭示课题。

师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

二、探究新知

1、观察比较,探究规律。

(1)请同学们观察,比较三个分数的大小。

师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

(课件出示:比较它们的分子和分母)

①从左往右看,是按照什么规律变化的?

②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

(3)教师总结分数的基本性质。(板书)

酸的性质教案篇6

(一)教学目标

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。

5.会进行分数与小数的互化。

(二)教材说明和教学建议

教材说明

1.本单元内容的结构及其地位作用。

本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。

学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。

通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。

这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

本单元的内容分为六节,各节的内容的编排体系及其内在联系如下图所示。

五下分数的意义和性质

从上面的图示,不难看出六节教材的内容所具有的内在逻辑联系。

首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。

其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。

在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。

在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。

在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。

显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。

2.本单元教材的编写特点。

与原教材相比,本单元教材的主要改进有以下几点。

(1)多侧面地展现了分数的来源。

在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。

从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。

现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段ab的长,量了3次还有一段pb剩余。

五下分数的意义和性质

这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段pb,量了3次恰巧量尽,那么pb的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。

从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。

在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。

在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。

这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。

(2)约数、倍数的有关知识与分数的相关知识结合起来教学。

我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。

现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。

(3)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。

(4)部分内容作了适当的精简处理或编排调整。

本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。

其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。

其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的.大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。

教学建议

1.充分利用教材资源,用好直观手段。

如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。

2.及时抽象,在适当的抽象水平上,建构数学概念的意义。

为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。

3.揭示知识与方法的内在联系,在理解的基础上掌握方法。

在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

4.这部分内容可以用20课时进行教学。

酸的性质教案篇7

教学内容:省编义务教材第十册第91—93页例1、例2。

教学目标:

1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

课前准备:

课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

教学过程:

1.创设情境,作好铺垫

出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

为什么你会猜是一道除法算式?(分数与除法有密切的关系)

除法与分数有什么样的关系?

(黑板上出示:被除数÷除数=)

根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

2、迁移猜想,引疑激思

分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

3、自主探究,验证猜想

也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

(1)初步验证

①出示:探究报告单,让学生读要求:

a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

b.选择合理的方法验证所前后两个分数是否相等。

c.填写好探究报告单。

选择探究的

分 数

分子和分母同时乘以或除以

一个相同的数

得到的

分 数

选择的分数与得到的分数是否相等

相等( ) 不相等( )

猜想是否成立

成立( ) 不成立( )

选择的分数与得到的分数是否相等相等()不相等()

猜想是否成立成立()不成立()

*:验证方法可用折纸、画线段图、计算、实物……

②学生合作进行探究。

③全班交流:

a、同桌一起上来,拿好探究报告单及验证材料等。

b、两人合作,一人讲解、一人验证演示。

c、得到结论:

(交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

4、议论争辩,顿悟创新

读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

5、训练技能,激励发展

刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

(1)练习明目的

根据分数的基本性质,填空。

1/2=()/8=5/()=()/6=7/()

采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

(2)慧眼辩是非

(3)变式练思维

把下面每组中的异分母分数化成同分母分数。

a、3/4,4/7b、5/6,4/9c、3/5,5/8

分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

(4)竞赛促智慧

①在1—9九个数字中任选一些数字组成大小相等的分数。

可以有:1/2=3/6=43=23=4/6这三组。

并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

②出示:1/a=7/b(说明:a、b都不是0。)

抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

6、回顾,掌握方法

今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

学生可能会回答:

生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

生2:我们是通过猜测的方法学的。

生3:我们还用验证的方法学习。

……

结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

酸的性质教案篇8

(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

(3)观察,说说你发现了什么? = = (课件揭示)

(4)交流:你还有什么发现?

分数的分子和分母变化了,分数的大小不变。

分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以 相同的数)(课件演示)

3、出示做一做图片(2),学生独立填写分数。

(1)说说你是怎么想的?

(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以 相同的数)

4、想一想:引导归纳分数的基本性质

(1)从刚才的演示中,你发现了什么?

板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词“都”、

“相同的数”、“0除外”。 “都”可以换成哪个词?——“同时”。

板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)

5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9 /12)(课件揭示)

师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?

6、趣味比拼,挑战智慧

给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

三、多层练习,巩固深化。

1、考考你(第43页试一试和练一练第2题)。

2/3=( )/18 6/21=2/( )

3/5 =21/( ) 27/39=( )/13

5/8=20/( ) 24/42=( )/7

4/( )=48/60 8/12=( )/( )

2、涂一涂,填一填。(练一练第1题)

3、请你当法官,要求说出理由.(手势表示。)

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )

(2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )

(3)3/4的分子乘3,分母除以3,分数的大小不变。 ( )

(4) 10/24=10÷2/24÷2=10×3/24×3 ( )

(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )

(6)3/4=3×0/4 ×0=3÷0/4 ÷0 ( )

4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

5、(1)把5/6和1/4都化成分母是12而大小不变的分数;

(2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

四、拾捡硕果,拓展延伸。

1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

(或用分数表示这节课的评价,快乐和遗憾各占多少?)

2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)

3、拓展延伸

师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?

比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?

五、动脑筋退场

让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。

会计实习心得体会最新模板相关文章:

小学教案模板教案最新8篇

六年级教案语文上册教案8篇

阁夜教案优秀教案8篇

滑滑梯教案小班教案8篇

大班语言活动教案:花教案8篇

幼儿教案中班游戏教案模板8篇

大班教案健康大班教案优质8篇

教案小班安全教案优质8篇

大班语言活动教案:花教案最新8篇

鲸教案设计优秀教案8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    29637

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。