我们可以根据教案中的评估方式,及时调整教学策略和方法,教案应当鼓励学生思考和探究,而不仅仅是传授知识,以下是好文溜溜小编精心为您推荐的五年级简易方程教案5篇,供大家参考。
五年级简易方程教案篇1
【教学内容】
教材第77页例3、“做一做”和练习十七的第1~4题。
【教学目标】
1.通过教学使学生掌握两积之和等于已知的总和和含有小括号的方程的解法,并会列方程解具有这种数量关系的应用题。
2.培养学生分析问题的能力和用多种方法解决问题的能力。
3.培养学生认真检验的良好习惯。
【重点难点】
寻找题目中的等量关系。
【教学准备】
教具:多媒体
【复习导入】
1.解方程。
2x-3=5 4.5+3x=13.5
2.妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?学生读题后,独立列式计算,并说出数量关系。
苹果的总价+梨的总价=总钱数
2.4x2+2.8x3=13.2(元)
3.揭示课题:这节课我们继续学习实际问题与方程。(出示课题)
【新课讲授】
1.教学“列方程解两积之和的应用题”。
(1)出示情景图。
每千克苹果多少元?
(2)列方程并解方程。
让学生独立写出等量关系,列方程并解方程。
苹果的总价+梨的总价=总钱数
解:设苹果每千克x元。
2x+2.8x3=13.2
2x+8.4=13.2
2.教学例题3。
出示例题3。
把上面的例题改成例题3:妈妈买了苹果和梨各2kg,共付10.4元,已知梨每千克2.8元,苹果每千克多少钱?
提问:这道题与上一题有什么异同?(这道题的数量关系和上个例题一样;只是部分数字进行了改动,解题方法也和上题一样)
学生独立解答。
(1)学生审题,说出解题思路。
(2)口头列出方程:2x+2.8x2=10.4。
(3)在课本上写出解答过程。
全班交流汇报,教师引导总结解法:
(1)用未知数x表示每千克苹果的价钱。
(2)根据苹果的总价+梨的总价=总钱数列方程。2x表示苹果的总价,2.8x2表示梨的总钱数。
(3)根据解2x+2.8x2=10.4这个方程的方法,把2.8x2先算出来,把2x看作一个整体,转化成我们学过的方程的类型来解方程。
教师边讲解边板书。
解:设苹果每千克x元。
2x+2.8x2=10.4
2x+5.6=10.4
2x+5.6-5.6=10.4-5.6
2x=4.8
2x÷2=4.8÷2
x=2.4
(4)经检验,x=2.4是方程的解。
3.探究第二种解法。
提问:除了上面的方法外,还有什么方法?(学生独立思考后,试着用另一种方法列出方程,说出自己的思路)
让学生说出数量关系,并列出方程。
板书:(苹果的'单价+梨的单价)x2=总钱数
解:设苹果每千克x元。
(x+2.8)x2=10.4
讨论:这个方程怎样解?自己动手试一试。
学生汇报交流。
教师引导学生总结:在解这个方程时,可以把小括号内的2.8+x看作一个整体,先求出2.8+x等于多少,再求出x等于多少。
板书:解:设苹果每千克x元。
(2.8+x)x2=10.4
(2.8+x)x2÷2=10.4÷2
2.8+x=5.2
2.8+x=5.2-2.8
x=2.4
4.比较两种解法。
提问:例3中的两种解法列出的方程有什么联系吗?
方程1:2x+2.8x2=10.4
方程2:(2.8+x)x2=10.4
学生自由发言。
讲解:从第二个方程到第一个方程,实际是利用了乘法分配律;从第一个方程到第二个方程;实际上是应用了乘法分配律的逆运算。
【课堂作业】
1.完成教材第77页“做一做”。
这道题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。
2.完成教材第80页练习十七的第1~3题。
【课堂小结】
提问:本节课你又学会了解哪些类型的方程?还有不明白的问题吗?
小结:这节课我学会了两积之和等于已知的总和及含有小括号的方程的解法。
【课后作业】
教材第80页练习十七第4题。
五年级简易方程教案篇2
一、班级学生情况分析
我所任教的五年级班共有学生xx人。一部分的学生学习态度端正,有着良好的学习习惯,空间观念较强。上课时都能积极思考,主动、创造性的进行学习。但从上学年的知识质量验收的情况看,学生的存在明显的两极分化,后进生的面还是大,针对这些情况,本学年在重点抓好基础知识教学的时,加强后进生的辅导和优等生的指导工作,全面提高两班的合格率和优秀率。
二、教材分析
本册教材内容包括:小数的乘法和除法;整数、小数四则混合运算和应用题;多边形面积的计算;简易方程四个部分。
(一)小数的乘法和除法
本单元是在学生掌握了整数的四则运算、小数的意义和性质以及小数加减法的基础上进行教学。这部分的`知识在本册乃至于整个小学阶段中取着举足轻重的作用。本单元的应用题主要是复习已学过的两、三步应用题,以培养和提高学生分析和推理能力,为下一单元学习新的应用题作准备。
本单元的教学重点:理解、掌握小数乘、除法的意义及计算法则;难点:小数除法的计算方法;关键:小数点的处理。
(二)整数、小数四则混合运算和应用题
本单元包括整数、小数四则混合运算和应用题两节。整数、小数四则混合运算是在学生已掌握整数混合运算和小数四则运算的基础上,对整数、小数四则混合运算进行概括的总结和提高。应用题前一部分是在已学知识的基础上整理总结解应用题的一般方法和步骤,扩展一般应用题的范围,后一部分是教学以反应两个物体运动为内容的一些行程应用题。
本单元的教学重点:掌握整数、小数四则混合运算的运算顺序,熟练进行计算;难点:列综合算式解答三步计算的应用题;关键:掌握列综合算式解答文字题。
(三)多边形面积的计算
本单元是在学生已经掌握平行四边形、三角形、梯形的特征以及长方形、正方形面积计算的基础上进行教学,这是今后学习圆面积和立体图形面积的基础。
这单元的教学重点:计算平行四边形、三角形和梯形的面积;难点:多边形面积公式的应用;关键:公式的推导过程。
(四)简易方程
本单元是在学生已学了一定的算术知识,已初步接触了一些代数知识的基础上进行学习用字母表示常见的数量关系,解简易方程和方程解应用题等代数初步知识,比和比例等内容良好基础。
教学重点:理解方程的意义,会解简易方程;难点:初步学会列方程解两、三步计算的应用题;关键:用字母表示数,表示常见的数量关系。
五年级简易方程教案篇3
教学目标:
知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。
过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。
情感、态度与价值观:感受小数乘法在生活中的广泛应用。
教学重点:
理解并掌握小数乘整数的算理,学会转化。
教学难点:
能够运用算理进行小数乘整数的计算。
教学方法:
迁移类推,引导发现,自主探索,合作交流。
教学准备:
多媒体。
教学过程
一、情境导入
1.谈话:同学们都喜欢哪些运动呢?
(生回答自己喜欢的运动……)
2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?
3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?
引导学生观察并思考:图中小明他们想买3个3.5元的风筝需要多少钱?你会列式吗?
指学生回答:3.5x3,教师板书:3.5x3。
4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?
生观察后回答:这道算式的因数有小数。
5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)
二、互动新授
1.初步探究竖式计算的方法。
(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)
(2)让学生说说自己的想法。
指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:
方法1:
连加。展示:3.5+3.5+3.5=10.5(元)
师:你是怎么想的?
生:3.5x3就表示3个3.5相加,所以可以用乘法计算。(师板书意义)
方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元x3=9元,5角x3=1元5角,9元+1元5角=10元5角,即3.5x3=10.5(元)。
方法3:把3.5元看作35角,则35角x3=105角=10.5元。
(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算3.5x37
引导:出示(边说边演示):
35角
x3
105角
3.5元
x3
10.5元
强调:我们可以把3.5元转化成35角,用35角乘3得105角,再把105角转化成10.5元。注意在列竖式时因数的末尾要对齐。
2.自主探究,进一步理解算理,掌握计算方法。
(1)教师出示算式:0.72x5。
师:同学们看0.72不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。
(2)学生汇报演示。
可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。
(3)比较:(见板书设计)
引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?
生:用乘法比较简便。
(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?
生:先把0.72小数点向右移动2位转化成72x5=360,得出结果后再把积的小数点向左移动两位就是3.6。
质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?
生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。
(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?
指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“o”时,应先点上小数点,再把“0”去掉。
师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?
学生独立计算,汇报交流。
师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!
三、巩固拓展
1.教材第3页做一做第1题
想一想:小数乘整数与整数乘整数有什么不同?
2.教材第3页做一做第2题
同桌之间相互谈谈是怎样点小数点的。
3.指名板演教材第3页做一做第3题
4.不用计算,你能直接说出下面算式的结果吗?
148x23=3404
14.8x23=()1.48x23=()0.148x23=()()x()=34.04
四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)
作业:教材第4页练习练习一第1、2、3题。
第二课时
课题:第一单元:小数乘法
教学内容:教材第4页练习一第3、4、5题。
教学目标:
知识与技能:
1.能熟练掌握小数乘整数的算理与算法。
2.会运用小数乘整数解决一些实际问题。
过程与方法:经历小数乘整数的练习过程,培养学生的运算能力,体现数学知识的运用价值。
情感、态度与价值观:感受数学和生活之间的内在联系,激发学生的`学习兴趣,培养热爱生活、热爱数学的良好情感,体验学习的成功与快乐。
教学重点:巩固小数乘整数的计算方法。
教学难点:运用小数乘整数解决实际问题。
教学方法:设置数学问题,引导学生练习;练习体验,小组交流讨论。
教学准备:口算卡片、多媒体。
教学过程
一、谈话导入
1.谈话:上节课我们学习了什么内容?学生自己回忆,个别提问,其他同学补充,师生共同总结小数乘整数的计算方法:小数乘整数,先按照整数乘法的计算方法计算,再看因数中有几位小数,就从积的右边起数出几位点上小数点。
2.导入:同学们学习了小数乘整数的算法,这节课我们的主要任务是巩固练习小数乘整数。(板书课题)
二、基础练习
1.口算练习。
⑴看谁算得又快又准。
6.5x10=0.56x100=3.78x100=
3.215x100=0.8x10=4.08x100=
⑵4.1x9=1.2x3=5x5.8=0.28x3=16.5x4=0.796x7=
教师出示算式卡片,指名口算。让学生说一说是怎样算的。
2.说一说
4.8+4.8+4.8+4.8用加法的简便算法表示是()x().表示求()是多少,求积时可看成()x(),先得出积(),再从右起点出()位小数,得()。
3.笔算练习。
0.32x47=1.6x52=64x0.25=1.37x21=
教师指名板演,学生独立练习,然后集体订正。
三、拓展提高
1.大家在逛商店遇见特卖会时是不是都有点心动?小刚也遇见了特卖会,那你帮他算算他至少要带多少钱才够?
某商店牛奶搞特卖活动,每盒牛奶1.4元,买四赠一。小刚要买20盒牛奶,至少要带多少钱?
分析:“买四赠一”的意思就是买5盒牛奶付4盒的钱数,求买20盒需要多少钱,就是求实际应付的钱数。
方法一:先求出20盒里有多少个(4+1)盒,再求出买4盒多少钱,最后求出一共需多少钱。
20÷(4+1)=4(个)1.4x4x4=22.4(元)
方法二:先求出20盒中一共有多少盒是需付钱的,再求出买20盒一共需多少钱。
20÷(4+1)x4=16(盒)1.4x16=22.4(元)
2.运用因数的变化引起积的变化规律巧计算
根据24x25=600,在()里填上适当的数。
(1)240x25=()
(2)2.4x25=()
(3)()x25=0.6
思路导引
(1)24x25=600(1)24x25=600
↓x10↓不变↓x10↓÷10↓不变↓÷10
五年级简易方程教案篇4
教学目标:
1、了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系,
2、能根据不同情况选择正确方法解决问题。
3、通过摆一摆、画一画、比一比等方法体会在一条直线上植树三种基本情况的联系。
4、在解决实际问题中感受数学的价值。
教学重点:
能阐述不同情况下点数与间隔数的关系,
教学难点:
能根据不同情况选择正确方法解决问题。
教学准备:
图片、小棒、习题
教学过程:
一、初步感知点与间隔数
同学们已经四年级了,在学校里上操,上体育课都少不了要排队,老师要请三位同学到前面按照老师的要求排队。(请三位同学到前面来)
师:面向老师排成一路纵队。相邻两位同学之间间隔1米。
师:排得不错。这路纵队长几米?你是怎么知道的?(生回答)
师讲解:这个同学到最后一个同学的距离叫做队伍的全长(总长);相邻两个同学之间的距离叫做间隔(板书:间隔、强调间的读音是四声);现在3名同学站队有几个间隔;(2个)这三名同学也可以当成三个点(板书:点)。
老师把这几个同学排队的情况抽象成平面图(师板书平面图),你能看懂吗?这几个点表示什么?点与点之间的是间隔。
师:间隔可以是人与人之间的距离,也可以是人与物,物与物之间的距离……
师:请同学们再数一数在平面图上有几个点?几个间隔呢?想象一下,四个同学排成一队会有几个点,几个间隔?试着像老师这样用线段图来表示。(生试画、展示)
师:如果是5名同学、6名同学以至于更多的同学站队会有几个点,几个间隔?请同学们用桌上的小棒来演示验证一下,摆的越多越好。(老师叫停)
师:数一数,5个同学是几个点,几个间隔?6个呢……
师:在刚才同学的站队及你的整个摆小棒的过程中你有什么发现?(排队人数比间隔多1,间隔比人数少1)
师:请同学们把学具整理一下。
师:在我们教室里也有这样点与间隔的现象存在,请同学们用你智慧的眼睛找一找。
生1:四个桌子间有4个点,3个间隔。
生2:三个窗户间有3个点,2个间隔。
生3:棚上有两盏灯,所以就有2个点,1个间隔。
师:大家都抬头来仔细观察、并且认真数一下,两盏灯之间到底有几个点,几个间隔?(2个点、1个间隔)
师:你认为什么是间隔?(灯与灯之间的距离就是间隔)
师:间隔就是距离,它可以是人与人之间的距离,也可以是人与物,物与物之间的距离……灯与灯之间有距离吗?(有)这就是间隔。灯与墙之间有距离吗?(有)那也是间隔。现在请同学们再数一数现在你看到的是几个点,几个间隔?(2个点、3个间隔)
二、引题。
在现实生活中,我们常常会遇到像同学们站队这样与点和间隔有关的'问题,数学家把这类问题统称为植树问题,这节课我们就一起研究和解决一些简单的植树问题。(板书:植树问题)
三、植树问题与同学站队建立联系,找出两端都植树棵数与间隔数的关系
(1)例1:同学们在全长100米的小路一边植树,每隔20米栽一棵(两端要栽)。一共需要栽多少棵树苗?
师:请同学们默读两遍,通过阅读你获得了哪些数学信息?(生说信息)
师:这里说的种树和刚才的排队活动有什么联系?(同学按自己的理解讲解)
教师讲解:这条小路的长100米相当于排队的队伍的总长;每两棵树之间的距离20米相当于相邻两名同学之间的距离;种树的棵数相当于排队的人数。想一想,在这一题中,什么相当于点?什么相当于间隔?
师:请同学们用你桌上的小棒摆一摆,看100米的小路上到底可以栽多少棵树苗?然后将你摆的抽象成平面图在练习本上画出来。(生试摆、试画)(找一生上黑板画线段图,生说是如何想的,可能出现的答案:我是这样表示的。先画一条长的线段表示这条小路,再画出第一个间隔,标出这个间隔的长是20米。)
师:我们可以直接算出什么?列式100÷20=5
师:这个5表示什么呢?(有5个间隔,这条小路可以分成20米长的5段)所以5的单位是什么?(个)完成这道题了吗?(没有)为什么?请同学们在练习本上写出算式。
师:谁来说一说这一题的解题过程。
师:通过摆一摆和画线段图,你发现棵数与间隔数之间的规律吗?(生答:棵数总比间隔数多1)能用一个公式的形式表示它们的关系吗?(板书:棵数=间隔数+1)
师:什么情况下棵数比间隔数多1呢?(师在黑板上画一个两端都不植树的平面图)引导学生得出在两端都植树的情况下。(板书:两端都植树)
过渡小结:刚才,同学们把植树和排队活动联系起来,发现了当两端植树时棵数=间隔数+1。是不是说只有植树才是植树问题呢?(不是的)对,在我们熟悉的生活中也有植树问题,回忆一下生活中哪些现象属于植树问题。(生说现象)
四、如果两端都不植树(一端植树、一端不植树)棵数与间隔数之间有什么关系
师:动物园里也存在植树问题,请看:
例2:大象馆与猩猩馆相距60米。绿化队要在两馆间的小路一侧植树,间隔的距离是12米。请问准备多少棵树苗合适?
四人小组讨论一下准备多少棵树苗合适,汇报。(60÷12+1=6)
有不同看法吗?
师:公园里的实际情况是这样的,师贴图(先贴大象馆和猩猩馆,再从大象馆开始每隔12米贴一棵树)
师:是不是有上当的感觉?有什么办法让大家不再上这样的当呢?怎样把题目改严谨呢?讨论改题。
生重新做题。讨论一下此时棵数与间隔有什么关系。(板书:棵数=间隔数-1)什么情况下?(两端都不植树)
师:植树问题除了以上两种类型外,还有另外一种,就像这样。看老师把它们抽象出来,(老师板书画线段图),同桌讨论一下,在这种情况下,棵数与间隔数有什么关系?
汇报。(在一端植树,一端不植树的情况下,棵数=间隔数。)
五、解决实际问题
你能运用刚才的发现解决一些实际问题吗?试一试吧。
1、口答
(1)如果一排树两头都种,有5个间隔,能种()棵树。
(2)从头至尾栽了10棵树,那么间隔数是()。
2、在一条30米的小路一侧摆花盆(两端都不摆),间隔长度是3米,需要多少盆花?
3、彩旗队插旗,每隔6米插一面,共插36面,从第一面到最后一面的距离有多远?
六、小结:
今天我们研究了植树问题,植树问题有哪几种不同的情况呢?有兴趣的同学课下可以继续研究。
五年级简易方程教案篇5
用字母表示数
1、使学生进一步理解用字母表示数的意义和作用。
2、能正确运用字母表示常用数量关系。
3、能较熟练地利用公式、常用数量关系求值
4、知识重点、难点
5、能正确运用字母表示常用数量关系
1、用字母表示数,有哪些好处?但要注意什么?
2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。
3、用s表示面积,c表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。
4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。
2×3a×714+ba÷7a×a5-x0.6×0.6
1、教学例4(1):
(1)引导学生看书提问:从图、表中你了解到哪些信息?
a、爸爸比小红大30岁。b、当小红1岁时,爸爸()岁,......
师:这些式子,每个只能表示某一年爸爸的年龄。
(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)
结合讨论情况师适时板书:
法1:小红的年龄+30岁=爸爸的年龄
法2:a+30
提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。在式子a+30中,a表示什么?30表示什么?a+30表示什么?
(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)想一想:a可以是哪些数?a能是200吗?为什么?
(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和
结果填在书上。
2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。
3、教学例4(2):
引导学生看书讨论:(可分成四人小组进行讨论)
(1)从图、表中你了解到哪些信息?
(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?
(3)式子中的字母可以表示哪些数?
(4)图中小朋友在月球上能举起的质量是多少?
请小组派代表回答以上问题。
4、总结:今天你学会了什么?有哪些收获?
1、独立完成p48做一做集体评议。
2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?
3、独立解答p49第4题做完后在投影仪上展示评议。(问问字母、式子表示的含义)课后追记
本课让学生熟悉用字母来表示数,以及熟悉用线段图来表示未知和已知的数量十分重要,这是写出表达式和方程的基础,老师一定要让学生尽快熟悉这种表达方式并利用这样的方式来表示一定的量。
方程的意义
教学内容:数学书p53-54及“做一做”,练习十一1-3题。
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。
今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+xt;300.
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
2、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
3、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
4、小结。
这节课学习了什么?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
1、 完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、 独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
练习十一第1题。
解简易方程
教学内容:义务教育课程程标准实验教科书数学(人教版)小学数学第9册57-58页的内容。教学目标:
1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
2、培养学生的分析能力应用所学知识解决实际问题的能力。
3、帮助学生养成自觉检验的良好习惯。
重点、难点:理解并掌握解方程的方法。
教具准备:多媒体课件
1、方程的意义
师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?
生:含有未知数的等式叫方程。
2、判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73(2)4x<36+17(3)234÷a>12
(4)72=x+16(5)x+85(6)25÷y=0.6
1、使学生能够解决简单的找规律问题。
2、使学生了解用符号与字母可以表示数。
教学重点
1、使学生能够解决简单的找规律问题。
2、使学生了解用符号与字母可以表示数。
教学过程
开山见山,现在我们开始要学习简易方程这个单元,这节课先来学下用字母表示数。
让学生汇报结果并说出其中的规律。
2、例2
让学生汇报结果并讲出是如何得来的。
3、例3
让学生汇报结果并讲出是如何得来的。
6,还有这些a,x,n,m,圆都可以表示数。在数学中,我们经常用字母来表示数。
2、同学们还知道哪里地方也是用字母来表示数的。
生:运算定律。加法交换律:a+b=b+a等。
1、刚才同学们通过找规律得出,这里的正方形表示15,这里的三角形表示1、出示例1。
用字母表示数(二)
1、使学生掌握含有字母式子的写法。式子中乘号的特殊写法。
(1)、字母中间的乘号可以记作“·”,也可以省略不写。
(2)、数字中间的乘号
(3)、数字与字母中间的乘号
(4)、与小括号中间的乘号
2、使学生了解计量单位的字母表示。特别突出m,dm,cm。
3、使学生学会用字母来表示正方形长方形的面积与周长公式,并套用字母公式解决实际问题。
4、使学生理解平方的意义与写法。
教学重点
1.使学生掌握含有字母式子的写法。式子中乘号的特殊写法。
2.使学生学会用字母来表示正方形长方形的面积与周长公式,并套用字母公式解决实际问题。
教学过程
1、教学导入。
通过上节课的学习,我们已经知道字母可以表示数。大家回忆下运算定律是怎样用字母表示的。乘法交换律:a?b?b?a
2、字母中间乘号的特殊写法。
在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。a?b?b?a可以写成a?b?b?a或ab?ba
强调只有乘号有简便写法,其他符号并没有简便写法。并通过讨论得出乘号除了在两个字母中间,也可能在数字与数字之间,数字与字母之间,数字与括号之间,字母与括号之间。
(1)数字与数字。不能写成点,也不能省略。2×3 (2)数字与字母。可以写成点,也可省略,但省略时数字应提到字母前面。3、讨论乘号在其他位置的写法。
a×2
(3)数字与括号。 (4)字母与括号。 (1)省略能省略的乘号 4、巩固练习
a?x a?b?c c?4 3?4?b (a?2)?c
(2)用a、b、c分别表示三个数,写出其他运算定律。
字母不仅可以表示数,我们的单位也可以用字母表示。让学生了解单位的字母表示。
三、用字母表示公式
1、用字母表示正方体的面积和周长。
先回忆正方体的面积和周长公式。
面积=边长×边长
s?a?a
c?a?4 周长=边长×4 s?a2 c?4a 出示例1。用s表示面积,用c表示周长,用a表示边长。 可以写成 可以写成 学习平方的意义
3、求正方体的面积和周长
出示例2。
4、练习
a)
b)
通过这节课的学习,你知道了哪些新知识。
1、含字母式子的写法。乘号的五种位置
2、单位可以用字母表示,如厘米用cm来表示。
3、正方体长方体的面积和周长公式用字母来表示。
4、平方的意义。
做一做第1题。 做一做第2题(要求先写公式再列算式)。
用字母表示数(三)
1、使学生理解并掌握用含字母的式子来表示一个量。
(1)、已知某个字母表示一个量,要求用含字母的式子表示出另一个量。
(2)、要求学生用某个字母代表一个量,用含字母的式子表示出另一个量。
2、感受含字母式子中字母是有取值范围的。
3、根据字母的取值,计算出式子的值。
1.使学生理解并掌握用含字母的式子来表示一个量。
(1)、已知某个字母表示一个量,要求用含字母的式子表示出另一个量。
(2)、要求学生用某个字母代表一个量,用含字母的式子表示出另一个量。
2. 根据字母的取值,计算出式子的值。
教学难点
要求学生用某个字母代表一个量,用含字母的式子表示出另一个量。 教学过程
会计实习心得体会最新模板相关文章:
★ 五年级教案8篇