好文溜溜 >教案

小学数学五年级教案通用7篇

教案也可以被视为教学的蓝图,它为教师提供了一个结构化的框架,以便他们能够有条不紊地传授知识,教案可以用来与同事分享教学经验,促进教育团队合作,好文溜溜小编今天就为您带来了小学数学五年级教案通用7篇,相信一定会对你有所帮助。

小学数学五年级教案通用7篇

小学数学五年级教案篇1

教学内容:

教科书18-19页

教学目标:

1结合具体情境,体验数学与日常生活的密切联系。

2、在解决实际问题的过程中,培养学生应用知识和学习数学的兴趣。

教学过程:

我有见解活动程序与教师提示活动内容关注要点

一、回顾圆的知识

圆:曲线图形

圆的组成:圆心、半径、直径

圆心决定位置,半径决定大小。直径、半径都有无数条。

圆的特点:在同一圆里,所有的半径都相等,直径是半径的2倍;圆是轴对称图形,有无数条对称轴。小组之间相互交流是否掌握圆的特征

二、回顾圆周长和圆面积计算公式推导的过程

圆的周长c=πd或c=2πr回忆圆周长、面积计算公式的推导过程。

三、做自主练习6、8题

第6题是利用圆的知识解决自然现象中的数学问题,水波传送的距离就是圆的半径,水波的面积就是圆的面积。

第8题求组合图形的面积,体会图形之间的关系,能熟练地运用不同图形面积公式计算。学生口答长方形的面积,正方形面积,梯形面积的公式。关注梯形的面积计算公式。

四、做自主练习10、11题。

10题先让学生独立解决,然后交流

11题是实际操作并计算的题目。

计算后,引导学生观察计算结果,体会两圆的半径比,周长比,直径比是相等的。学生口答:要求扩建后圆形花坛的周长与面积,需要先求出扩建后花坛直径。关注测量的方法正确。

五、课堂小结

这节课你有什么收获?学生总结本节课所学知识。

小学数学五年级教案篇2

教学内容:

书第54——55页,有趣的测量及试一试第1、2题。

教学目标:

1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。

2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。

3.情感、态度与价值观:在观察、操作中,发展学生空间观念。

教学重点:

用多种方法解决实际问题。

教学难点:

探索不规则物体体积的测量方法。

教学准备:

不规则石头、长方体或正方体透明容器、水。

教学过程:

一、导入新课

师:同学们,我们已经学会了如何计算长、正方体的体积。现在老师这里也有一个东西,你能帮我测量出它的体积吗?

老师出示准备好的不规则石快。

师:这个石块是什么形状的?(不规则)

什么是石块的体积?

你有什么困难?

二、教学新知

1.测量石块的体积

(1)小组讨论方案

师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?

(2)小组制定方案

(3)实际测量

方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。

师:为什么升高的那部分水的体积就是石块的体积?

方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。

师:为什么会有水溢出来?

这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。

1.实际应用

一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面上升了0.2分米,这个土豆的体积是多少?

(1)读题,理解题意。

(2)分析:你是怎么想的?

(3)学生尝试独立解答。

(4)集体反馈,订正。

让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)

三、课堂小结

学习了这节课,同学们有什么感受和体会?有什么提高?

作业设计:

1.书第55页第2题。

本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。

2.学生再找一些实物,测量出体积。

板书设计:

有趣的测量

方案一:

方案二:

“底面积×高”的方法计算。

2×1.5×0.2=0.6(立方分米)

小学数学五年级教案篇3

【设计理念】

数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

【教学内容】

人教版五年级下册第23~24页“质数与合数”。

【学情与教材分析】

本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

【教学目标】

1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

【教学准备】

课件;练习纸每生一张。

【教学过程】

活动一:构建质数和合数概念

1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

【设计意图】

“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

活动二:讨论质数和合数的特征

1.师:“从这些乘法算式中,你发现了什么?

学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

师:观察因数的个数,你又发现了什么?

从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

3.根据学生回答板书。

4.讨论:“1”是质数还是合数?

学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

师把板书写完整。

5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

【设计意图】

预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

活动三:应用概念寻找或判断质数

1.继续寻找30以内的其它质数。

2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

3.下面的说法正确吗?说说你的理由。

⑴所有的奇数都是质数。()

⑵所有的偶数都是合数。()

⑶在1、2、3、4、5……中,除了质数以外都是合数。()

⑷两个质数的和是偶数。()

【设计意图】

通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

活动四:拓展延伸深化概念

1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

⑴两个质数的和是10,积是21,他们各是多少?

⑵两个质数的和是20,积是91,他们各是多少?

⑶最小的质数是?最小的合数是?

2.在括号里填上质数:

8=()+()12=()+()28=()+()

3.数学小阅读:哥德巴赫猜想。

同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

【设计意图】

在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

活动五:总结

这节课你有哪些收获?

小学数学五年级教案篇4

[教学目标]

1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。

2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点]

确定积的小数点的位置。

[教学难点]

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析]

本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而,“按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程,教材安排两次探究活动:第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。

[教学过程]

一、在“情境”中引发问题

1、复习旧知:小明搬了新家,这是他家的建筑平面图。你能计算每个房间的占地面积吗?说说你是怎样算的?

书房的面积:3×3=9平方米

厨房的面积:2.7×2=5.4平方米,先按照整数乘法进行计算,因为2.7中有一位小数,所以积中也有一位小数。

客厅的面积:3.21×5=16.05平方米先按照整数乘法进行计算,因为3.21中有两位小数,所以积中也有两位小数。

2、提出问题:有没有同学能计算卧室的面积?

列出算式:3.6×2.8(学生苦于无法计算,面露难色)

指导观察:“3.6×2.8”和刚才的乘法算式有什么不同?

揭示课题:这节课我们一起来探讨“小数乘小数”的计算方法。

(设计意图:从计算“房间的面积”这个生活原型引入,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。)

二、在推理中实现转化

(一)尝试计算,引导推理

1、估一估,确定积的范围

先估计一下,“3.6×2.8”的积大约是多少?

估算方法一:4×3=12平方米,把3.6和2.8分别看成最为接近的整数,把两个数都看大了,准确得数比估计的数小,所以积小于12平方米。

方法二:3×3=9平方米,把3.6和2.8分别看成比较接近的整数,把3.6看小,2.8看大,所以积在9平方米左右。

确定范围:通过刚才的估计,我们知道“3.6×2.8”的积应该小于12平方米或是9平方米左右,那么准确得数究竟是多少呢?我们可以用竖式来计算。

(设计意图:在竖式计算之前先估一估,一方面使学生体会到解决问题策略的多样性与灵活性,在不要求精确结果的情况下可以使用估算方法很快解决实际问题。同时不同估算方法得到的结果也能为探索笔算方法提供正确结果的大致范围。)

2、点拨转化方向

根据我们以往计算小数乘整数的经验,猜测一下:用竖式计算小数乘小数可以怎样计算?(把两个小数都看成整数,先按整数乘法进行计算,点上小数点。)

3、尝试计算,突现矛盾

学生独立尝试计算,小组相互交流。而后,选择不同的方法板书在黑板上。可能有以下两种方法:

3.63.6

×2.8×2.8

288288

7272

100.810.08

(a)(b)

方法a:把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积也是一位小数,结果是100.8。

方法b:我也是把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积中肯定也有两位小数,积是10.08。

突现矛盾:两种算法似乎都有各自的道理。那么,根据你的理解,哪种算法可能是正确的?(学生可以从刚才估计的结果来判断)大家一致认为10.08是合理的答案,看来关键问题是积的小数位数。计算3.6×2.8的积为什么要点出两位小数?我们继续研究。

4、激活旧知,引导推理

尝试解释:计算3.6×2.8的积为什么要点出两位小数?你能想办法说明吗?

可能出现两种解释方法。方法一:把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位。所以积是两位小数。方法二:运用“积的变化规律”和“小数点移动规律”,计算时把3.6和2.8分别看作36和28,把两个因数都乘了10,算出的积1008就等于原来的积乘100。为了让积不变,就要把1008除以100。

引导推理:随着学生的回答,出示分析推理图,你能看懂虚线框里的意思吗?谁愿意说说自己的理解?

3.6

×2.8

288

72

1008

看着分析图,引导学生完整叙述整个推理过程。

第一个箭头“×10”是把3.6看成36是乘10;第二个箭头“×10”是把2.8看成28是乘10;把两个因数都乘10,得到的积就等于原来的积乘100;最后一个箭头“÷100”表示要得到原来的积就要把得到的整数积除以100。

现在你们知道算法a错在哪里了吗?(两个因数都乘10,积也就乘了100,算法a只把得到的积除以了10。)

小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。

通过推理,我们证明了3.6×2.8=10.08,和估计的结果是一致的,积确实小于12平方米或是9平方米左右。

(设计意图:最现实的教学起点是学生认知上的困惑与矛盾处。学生根据以往小数乘整数的经验,能够凭借直觉判断小数乘小数也能转化乘整数乘法进行。然而按整数乘法算出积后如何回归到小数乘法的积,恰是学生的思维困惑处。适时呈现推理图,让学生思考虚线框里的箭头图及提示算式的意思,扶着学生一步步完成整个推理过程。)

(二)独立推理,实现转化

1、提出问题:刚才我们求出了小明房间的面积,阳台的面积是多少平方米呢?

根据例题学习的方法,先想一想可以怎样计算2.8×1.15,再根据自己的思考过程,结合分析图完成。

1.15

×2.8

920

230

2、交流推理过程:你是怎样得到1.15乘2.8的积的?追问:得到3220后为什么除以1000呢?

引导学生表达(结合分析图):把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000。要求原来的积,就要用3220除以1000,从3220的右边起数出三位,点上小数点。

3.220可以化简吗?根据是什么?

(设计意图:这里学生独立经历推理的过程,看图填数,依着箭头图的提示进行完整的思考。通过扶放结合,循序渐进的数学推理活动,学生在探索中感受着计算思维的内在魅力,感悟着知识间的内在联系、解决新问题的有效途径——转化策略,同时对“积的小数位数与因数小数位数”的关系也有了初步的体验。)

(三)专项对比,概括方法

1、专项对比:两次探究之后,我们来比较各题中两个因数与积的小数位数,你发现它们之间有什么联系?(小数与小数相乘时,如果因数里一共有几位小数,那么积里面就有几位小数。)

2、你能给下面各题的积点上小数点吗?

8.772.916.5

×0.9×0.04×0.6

7832916990

3、概括方法:通过探索,大家对小数乘小数的.方法都有了各自的理解。那么,你觉得小数乘小数应该怎样计算?小组里互相说一说。

在全班交流的基础上引导学生完整表达:先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。跟我们刚才的猜测是吻合的,关键是确定积的小数点的位置。

(设计意图:探索之后应是发现与提升。通过比较因数与积的小数位数的关系,学生在理解算理的基础上自然发现积里点小数点的操作方法。随后归纳概括出小数乘小数的计算方法也就水到渠成了。)

三、在“应用”中发展思维

1、基本练习

(1)根据148×23=3404,很快地写出下面各题的积

14.8×23=148×2.3=14.8×2.3=1.48×2.3=0.148×23=

(2)完成练习十四第1题。学生独立计算,然后同桌互相检查计算过程。

2、解决问题

(1)星期天,小明的妈妈去超市买东西。

商品名称

色拉油

饼干

大米

单价

38.7元/瓶

15.6元/千克

5.8元/千克

数量

2瓶

1.5千克

18.4千克

总价

(2)这是小明的爸爸去某地出差乘出租车的一张发票,显示以下信息:单价1.6元,里程5.5千米,起步价8元/3千米。学生讨论算法,尝试计算。

3、拓展练习

在括号里填上合适的数,使算式成立。

( )×( )=0.48

(设计意图:这里既有突出重点方法的专项练习、基本练习,又有运用方法解决问题的实际应用,更有拓展思维的挑战性练习,希望通过一系列有层次的练习活动,实现学生计算教学中的基础性和发展性的和谐统一。)

四、在“交流”中提升经验

让学生畅谈学习的感想,并总结本课的主要知识。

(设计意图:反思是重要的学习方式,在新课即将结束时,引导学生回顾与反思方法与技能的获得过程,能帮助学生提升转化这一重要的解决问题的策略,丰富学生的体验。)

小学数学五年级教案篇5

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的.特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:理解等式的性质,理解方程的意义。

教学难点:利用等式性质和方程的意义列出方程。

教学准备:多媒体课件

教学过程:

一、情景引入

1、出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100 (板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100 x+50=150

x+50

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练。

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计:

方程

等式50+50=100x+50>100 x+50=150

方程 x+50

小学数学五年级教案篇6

教学目标:

1、知识与技能:能根据统计表正确绘制单式折线统计图。能根据折线统计图对数据进行分析,对数据的变化做出合理的推测,并能提出和解决数学问题。

2、过程与方法:通过已有的统计经验迁移学习单式折线统计图。通过条形统计图和折线统计图的比较,了解折线统计图的特点和优势。

3、情感态度价值观:培养学生观察、分析数据和合理推测能力。体会统计在生活中的作用和意义。

教学重点:

认识单式折现统计图,了解折线统计图的特点和优势。会看、会绘制折线统计图,并能够根据折线统计图提出和解决数学问题。

教学难点:

感悟折线统计图的特点,能对数据的变化做出合理的推测。

教学准备:

多媒体课件。

教学过程:

一、新课导入

谈话:同学们喜欢机器人吗?参加过机器人大赛吗?没有也没关系,以后会有机会的。 在中国,自20xx年起,每年都会举办一次全国青少年机器人大赛。记得在第一届大赛时,全国的参赛人数仅为200。不过后来,随着科技的不断发展,青少年中敢于进行科技创新的人才越来越多,参加机器人大赛的人也越来越多。在20xx年时,已有约1100名选手,参赛队伍是426支;到20xx年,参赛队伍达到了499支。老师还查询了其他几个年份的参赛队伍数量,大家请看。(教师边说,边通过课件出示统计表)

二、复习旧知──条形统计图

1.教师:请同学们思考,从统计表里你得到了什么信息?(学生回答)

教师:刚才说的信息,大家能用我们学过的统计图表示出来吗?

教师引导学生思考:横轴表示什么,纵轴表示什么?根据数据的情况,第一个起始格应该表示多少?接下来一格代表多少合适呢?

2.根据学生的回答出示条形统计图。(课件演示)

3.教师:观察完成的条形统计图,哪一年参赛的.队伍最多?哪一年参赛的队伍最少?这些问题都一目了然了。如此看来,条形统计图比统计表更加清楚、直观。

?设计意图】通过复习条形统计图的知识,为学习折线统计图做好准备。

三、探索新知

1.认识折线统计图

(1)课件出示折线统计图。 教师:有一种比条形统计图更加强大的统计图,同学们想不想认识一下?请看大屏幕。

课件出示:中国青少年机器人大赛参赛队伍统计图(20xx-2011年)。

教师:统计图还可以这样画。这种统计图叫做折线统计图,今天我们就来学习有关折线统计图的知识。(教师板书课题:折线统计图)

(2)初步体会折线统计图的绘制过程。

教师:我们首先来观察一下折线统计图的横轴与纵轴,与条形统计图相比,它们相同吗?(学生回答相同)

教师:想知道其中的折线是怎样画出来的吗?我们一起来看一下。 教师边介绍边描点,最后把这些点用线段顺次连接起来。

小学数学五年级教案篇7

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长宽高

讲述:如果用字母v表示长方体的体积公式可以写成:v=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:v=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。v=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计 :

长方体和正方体的体积

长方体的体积=长宽高

v=abh

正方体体积=棱长棱长棱长

v=aaa=a3

会计实习心得体会最新模板相关文章:

小学一年级数学教案模板7篇

小学一年级数学人教版教案7篇

小学五年级语文教案模板8篇

小学五年级语文教案参考6篇

小学六年级数学下册教案7篇

小学五年级可能性教案5篇

小学五年级下册语文教案6篇

小学数学六年级圆的周长教案7篇

小学六年级数学下册教案推荐7篇

人教版小学语文五年级上册教案8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    61858

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。