教案的编写需要教师考虑学生的背景和需求,以及课程的要求,教案的适切性可以通过持续的自我反思和专业发展来提高,以下是好文溜溜小编精心为您推荐的2023人教版六年级上册数学教案8篇,供大家参考。
2023人教版六年级上册数学教案篇1
教学内容:教材第19、20页相关内容及练习题
教学目标:
知识与技能:
1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。
2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在平面图上画出物体的具体位置。
情感态度价值观:
1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2.培养学生合作交流的能力以及学习数学的兴趣和自信心。
过程与方法:通过小组合作交流探讨,掌握画图的方法。
教学重难点:
重点:能根据任意方向和距离确定物体的位置。
难点:根据描述标出物体在平面图上的具体位置。
教学方法:合作交流、共同探讨
教、学具准备:
教师:多媒体课件,直尺、量角器等。
学生:直尺、量角器。
教学过程:
一、情景导入
1.交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向a市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2.导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。
[板书课题:位置与方向(一)]
?设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。
二、探究新知
??教学题例1
1.投影出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)
2.交流确定台风中心具体位置的方法。
⑴让学生尝试说说台风中心的具体位置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于a市所在的方向,也就是台风中心位置与a市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
⑶小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具体位置吗?
引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。
3.组织计算。
师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市呢?
学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1.投影出示例题2。
提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。
2.尝试画图。
⑴学生独立思考怎样标出B市、C市的具体位置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3.组织全班交流。
投影展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4.算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5.总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
?设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。
三、巩固练习
1.教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。
⑴让学生独立进行测量、计算、填空。
⑵组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2.教材第21页“做一做”。
⑴学生独立进行画图。
⑵投影展示,组织评议。
⑶交流画图的方法。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。
教学目标:
1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。
教学重点难点:
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
教具准备:课件。
教学过程:
一、复习旧知,导入新课
1、师:同学们,今天这节数学课我们一起来研究百分数的应用。(板书:百分数)什么是百分数?你能说一个生活中的百分数吗?你怎么理解这个百分数?
2、师:因为百分数的意义使百分数在日常生活中的应用非常广泛,今天要研究的主题就是百分数的应用(补充板书:百分数的应用)
二、教学过程
活动一:创设情境,引出新知
1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?
2、课件出示情境,引导学生观察
师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看:
45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
3、师:根据这两个条件,你能提出什么问题?
生提问,师选择板书。
(1)、冰的体积是原来水的体积的百分之几?
(2)、原来水的体积是冰的体积的百分之几?
(3)、冰的体积比原来水的体积增加百分之几?
4、在这些问题中,我们能解决哪些问题?
师生共同解决,并将解决的问题擦掉。
活动二:理解“增加百分之几”。
1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?
2、学生用自己的方式理解“增加百分之几”的意思。
3、全班汇报,由口头理解的不清晰,引出线段草图。
4、对比书中的线段图和学生的线段草图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?
通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。
5、列式计算,数形结合,说出两个列式的含义
6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。
可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。
三、训练巩固
1、根据问句,说出谁和谁比,谁是单位“1”的量。
①女生人数是男生人数的百分之几?
②梨的质量是苹果质量的百分之几?
③降价了百分之几?
④增产了百分之几?
2、消费宝典
电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)
(引导学生先理解“降低百分之几”再列式计算。)
3、建设新农村
选一选:
光明村今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?
(1)。(121-66)÷121
(2)。 66÷121
(3)。 66÷(121-66)
(让学生说出选择的依据。)
四、课堂小结
通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。
教学目标:
1、欣赏由基本图形构成的美丽图案,并了解图案的排列规律,感受图形的美。
2、会用正方形、长方形、三角形、平行四边形等图形设计图案。
3、发展学生的空间想象力,创新意识和审美意识。
教学重点:
感受图形的美,会用基本的几何图形设计有规律排列的图案。
教学难点:
发现图案的排列规律。
教具准备:
课件、方格纸、水彩笔、尺子。
教学过程:
一、复习旧知,导入新课
1、展示一件衣服
师:你发现了什么?
引导学生发现衣服上有学过平面图形。
2、出示平面图形
学生说出图形的名称。
师:今天我们就来欣赏和设计由这些平面图形组成的漂亮图案。
出示课题:欣赏与设计
二、欣赏图案
1、欣赏课本上的6幅图案
师:老师收集了一些图案,请看。漂亮吗?请仔细欣赏,选一幅你最喜欢的,和你同桌说说它是由哪些平面图形组成?用了什么颜色?
2、交流汇报
(1)由2名学生选择喜欢的图案回答。
(2)教师指定一幅图案学生回答。
师:喜欢第5幅的同学请举手。这幅图案用了什么图形?(三角形、六边形)红色的六边形由几个三角形组成?(6个)在红色六边形的周围你还发现了什么?这幅图案像什么?
三、生活中的图案
师:这些漂亮的图案都是来自生活中,在我们的身边你在哪里见过像这些一样由平面图形组成的,有漂亮颜色的图案呢?
学生回答:地板砖、衣服、广场等。
四、找规律
师:咱们学校新建的厕所还没有合适的地板瓷砖图案,校长想请全校的同学都来出谋献策。淘气已经设计了一幅,大家请看。(课件出示方格图案)
1、在这幅图案上你发现了什么?
学生发现有正方形,还有4种颜色。
2、观察这4种颜色的排列规律。
①第一行第5个正方形是( )色,第一行第8个正方形是( )色。第11个呢?
你是怎样想的?有没有好办法能很快算出来?可以互相讨论。
引导学生说出,横着看图案的颜色排列规律。
②第一列第6个正方形是( )色?你是怎样想的?
引导学生说出,竖着看图案的排列规律。
3、你还发现了什么规律?
4、想象一下,如果继续画下去,会是什么样子的?(课件展示画下去的图案)
五、设计图案
1、师:刚才这幅图案是淘气设计的学校厕所瓷砖图案的效果图,你觉得怎么样?为什么?
学生发表自己的看法。
师:你想设计吗?如果你是设计师你想怎样设计?
2、设计要求
(1)用学过的平面图形设计;
(2)图形的形状、颜色排列要有规律;
(3)设计的图案要美观大方。
3、学生设计图案
4、展示学生作品
师:请说说你是怎样设计的?
师:谁来说说他设计得怎么样?
六、总结
今天我们一起欣赏了图形的美,感受了美,并用双手创造了美,老师希望大家在今后的生活中,不仅能画出美丽的图案,还能够用美的语言,美的行为和美的心灵去装点我们的生活。
2023人教版六年级上册数学教案篇2
设计说明
“百分数的意义和读写法”是在学生学习了整数、小数以及分数的基础上进行教学的,百分数与分数有着密切的联系。基于以上认识,教学设计主要突出以下几点:
1.以实际生活情境为载体,感知百分数的意义,培养学生的思维能力。
数学知识来源于生活,又服务于生活。百分数的知识与现实生活有着密切的联系,所以,在引入课题和百分数意义的教学中,教学内容的选择都要紧密联系学生的生活实际,而且通过课前对百分数的收集,使学生认识到百分数在生产、生活中的广泛应用。同时,以实际生活情境为载体,充分挖掘学生学习的潜能,使学生积极地参与到数学活动中去,培养学生的思维能力。
2.注重新旧知识的对比和迁移,体现类比的思想方法。
对比和迁移能使学生容易接受新知识,防止新旧知识混淆,提高学生的辨别能力,从而扎实有效地掌握数学知识。教学百分数的意义是在学生已掌握了分数的意义的基础上进行的,教学设计中通过与分数的意义进行对比,明确分数的意义与百分数的意义的区别,更加突出百分数的意义是表示一个数是另一个数的百分之几的数,表示的是两个数之间的倍比关系。
课前准备
教师准备ppt课件
学生准备学生课前收集的生活中有关百分数的资料
教学过程
⊙情境导入
1.出示课件。
师:同学们,看了这段资料,你发现了什么?你有什么感想?
引导学生发现百分数的同时,让学生感受到我们国家的经济发展水平正在逐步提高。
师:你知道这些数叫什么数吗?还在哪些地方见过这样的数?
学生讨论后,教师明确:像上面这样的数,如14%、65.5%、120%……叫做百分数。
2.引导学生交流课前收集到的百分数的资料。
师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂
2023人教版六年级上册数学教案篇3
课题:倒数的认识
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标——研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的`倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1) 师:下面,请大家各自举例加以说明。
(2) 学生先独立思考,再交流。
(a、 以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)
(b、 以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)
(c、 以“带分数”为例;带分数的倒数是真分数。)
(d、 以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、 以“整数”为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论“0”、“1”的情况:
1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成“练一练”。
学生独立完成后,集体订正。重点问:“8”的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。
2023人教版六年级上册数学教案篇4
本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。
由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。
教材还编排了很多问题情境图来突破教学中的重难点问题。
例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。
这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)
第1课时比的意义
教材48~49页的内容。
1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。
重点:
理解比的意义以及比与分数、除法之间的关系。
难点:
理解比与分数、除法之间的关系,明确比与比值的区别。
课件:
学具。
1.课件出示教材第48页情境图。
教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?
(1)长比宽多多少厘米?15-10;
(2)宽比长少多少厘米?15-10;
(3)长是宽的多少倍?15÷10;
(4)宽是长的几分之几?10÷15。
2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)
自学比的相关知识。
学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)
(1)比各部分的名称。
课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)
(2)比值的意义。
师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)
师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)
师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?
讨论后根据学生交流反馈填写下表:
联系
区别
除法
被除数÷除数=商
一种运算
分子—分母=分数值
比
前项:后项=比值
两个量的关系
请尝试用字母表示比和除法、分数之间的内在联系。
板书:a∶b=a÷b=(b≠0)。
师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。
师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)
1.教材第49页“做一做”第1题。
请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)
2.教材第49页“做一做”第2题。
学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)
3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。
说说这节课我们学习了什么?你有什么收获?
教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。
在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。
第2课时比的基本性质
教材第50~51页的内容。
1.理解和掌握比的基本性质,初步掌握化简比的方法。
2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
重点:
理解比的基本性质。
难点:
正确应用比的基本性质化简比。
课件、答题纸、实物投影。
师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的.性质呢?
板书:比的基本性质。
学生纷纷猜想比的基本性质。
根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
1.教学比的基本性质。
师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)
(4)全班验证。
2.完善归纳,概括出比的基本性质。
10∶15=10÷15==
15∶9=15÷9=
16∶20=(16
○
□)∶(20
○
□)
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善并板书。
(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。
3.深化认识。
利用比的基本性质做出准确判断:
(1)8∶10=(8+10)∶(10+10)=18∶20( )
(2)12∶16=(12÷6)∶(16÷4)=2∶4( )
(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )
(4)比的前项乘3,要使比值不变,比的后项应除以3。
( )
4.比的基本性质的应用。
(1)引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
(2)从下列各比中找出最简整数比,并简述理由。
3∶4 18∶12 19∶10 ∶ 0.75∶2
(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))
学生独立尝试,化简后交流。
(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)
(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))
四人小组讨论研究,找到化简的方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
5.方法补充,区分化简比和求比值。
)
还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)
2.教材第53页“练习十一”第4题。学生口答完成。
这节课你有什么收获?还有什么疑问?
比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用
教材第54页的内容。
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
课件。
课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)
师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)
1.课件出示教材第54页例2。
师:题目中要配制什么?(配制500
ml的稀释液)
师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)
师:“浓缩液和水的体积比是1∶4”是什么意思?
生:就是说在500
ml的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。
师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?
师:你能求出浓缩液和水的体积各是多少毫升吗?
引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。
思路一:先把比化成分数,用分数乘法来解答。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500×=100(ml)
水的体积:500×=400(ml)
思路二:把比看作分得的份数,先求一份数,再求几份数。
稀释液平均分成的份数:1+4=5(份)
浓缩液的体积:500÷5×1=100(ml)
水的体积:500÷5×4=400(ml)
2.验证所求问题。
方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。
方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。
3.明确按比例分配的意义。
在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)
4.整理解题思路。
(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)
(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。
1.教材第55页“练习十二”第1、2题。
第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。
2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。
3.教材第56页“练习十二”第11题。
注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。
今天这节课我们主要研究了什么?说说你的收获和感受。
本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
2023人教版六年级上册数学教案篇5
教学内容:
教材第59页及相关题目。
教学目标:
1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。
2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。
3、培养学生观察周围事物的兴趣,提高观察能力。
教学重点:
认识圆的对称轴。
教学难点:
用圆设计图案的方法。
教学准备:
多媒体课件、圆规、直尺等。
教学过程:
学生活动(二次备课)
一、复习导入
1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。
师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。
2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?
学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。
3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。
二、预习反馈点名让学生汇报预习情况。
(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、设计美丽图案——花瓣。
(1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?
(2)想一想,自己尝试画一画。可参考课本第59页的步骤。
(3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。
小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。
2、设计美丽的图案——风车图。
(1)观察图案,想一想如果画这个图案,应按怎样的步骤。
(2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:
①先画一个圆,在圆内画两条互相垂直的直径。
②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。
③把所画半圆涂上颜色。
3、设计美丽的图案——太极图。
指名说一说画太极图的步骤:
(1)画一个圆,在圆内画一条直径。
(2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。
(3)把圆的一半涂上颜色,如图所示。
四、巩固练习
1、完成教材练习十三第6题。
2、完成教材练习十三第8题。
3、完成教材练习十三第9题。
五、拓展提升
观察图案,说一说下面两个图案的画法。
六、课堂总结
让学生说一说这节课的收获。
七、作业布置
教材练习十三第7题和第10题的第1、4个图案。
画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。
教学反思
成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。
2023人教版六年级上册数学教案篇6
教学目标
1、 知识目标:使学生知道储蓄的意义,明确本金、利息和利率的含义,掌握计算利息的公式。
2、 能力目标:培养学生能够利用公式解决实际问题的能力和搜集整理资料的能力。
3、 情感目标:培养学生的投资意识和节约爱储蓄的好习惯。
内容分析
1、 重点:使学生明确本金、利息、利率的含义,掌握计算利息的公式。
2、难点: 理解本金、利息、利率的做含意以及三者之间的关系,会利用利息计算公式解答实际问题。
教学准备
1、学生上网去查寻或向父母了解有关的储蓄知识;
2、银行定期存款凭条;
3、教学课件。
教学策略
质疑解疑,合作探究,学会搜集整理资料
教学模式
导入 依提纲自学 小组交流自学体会 师生补充说明
教学程序
一、启发谈话 导入新课 师:同学们,你们知道爸爸妈妈每个月的工资都做什么用了吗?剩下的暂时不用的钱呢?把钱存入银行有什么好处?那么怎样计算存款的利息呢?今天我们就来研究这问题。(板书课题:利息) 学生自由谈。 检查学生课前的调查情况。
二、自学教材 领悟新知
三、小组讨论 解决疑难
四、排疑解难 学后测查
排疑解难 师:下面请同学们依据自学提纲,独立自学教材3839页的内容。屏幕显示自学提纲:
1、存款的意义
2、存款的种类和形式
3、本金、利率和利息的含义
4、存款的利息计算公式
5、小丽整存整取的年利率为2.25%,年利率2.25%的含义
6、利息的多少是由什么决定的?
教师巡回指导,并让学生在读书过程中把重点的地方画下来。师:大家在自学过程中都学到了一些新的知识,也可能会遇到一些解决不了的问题。下面就请同学们以小组为单位,依据自学提纲把自己自学所获得的知识及遇到的问题带到小组进行交流,讨论解决。若还不能解决的问题请暂时保留。(教师巡回指导。注意倾听学生提出的新问题及解决办法。理解有误的与同学们商讨解决。使学生从悟中学。)针对学生在自学中、小组讨论中遇到的疑难发现的新问题,师生共学生自己读书。学生自己解决问题。学生画。小组合作交流,共同探讨。学生提出解决不了的问题。 锻炼学生的自学能力。锻炼学生独立思考和质疑解疑的能力。培养学生会读书的能力。培养学生团结协作的精神。锻炼学生质疑解疑的能力。
五、加强反馈 巩固新知
六、总结深入 强化新知
七、课后作业:
同商量,研究解决。(也可利用学生上网查找的资料来共同解决)
师:下面老师想检查一下大家的自学情况,看屏幕小红1999年10月1日在银行定期存了200元钱,如果存整存整取二年期的年利率是7.92 % ,到2001年10月1日小红一共能得到多少元? (读题,给学生思考时间,谁能说一说你的想法。学生上前板演,其他人在练习本做)
1、拿出存款凭条,仔细观察,你发现了什么?
2、指导学生填写并算出你将获得的利息。(选几个放展示台展示)
师:你还知道存款的哪些知识或常识?
1、基本练:选择题 (略)
2、提高练:应用题 (略)
3、思考题 (略)
依自学提纲进行总结复习,说说本节课你有哪些收获。略学生说出自己的想法。学生自己做。学生观察。学生自己填。汇报搜集到的资料。学生自由说。 资料自己解决问题的能力。检测自学情况。锻炼学生把知识应用到实际生活中的能力。锻炼学生的观察能力。锻炼学生搜集整理资料的能力。检查学生的学习情况。突出本节课的重难点。锻炼学生的社会调查能力。
板书设计: 百分数的应用利息利息的计算公式:利息=本金利率时间 2007.92%2(1-20%)+200
2023人教版六年级上册数学教案篇7
教学内容:
人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
?设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
?设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
16:20=(16○□):(20○□)。
4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)
5.质疑辨析,深化认识。
?设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1.引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
2.从下列各比中找出最简整数比,并简述理由。
3:4;18:12;19:10;;0.75:2。
(二)初步应用。
1.化简前项、后项都是整数的比。(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=():()。
预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。
2.化简前项、后项出现分数、小数的比。(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像:和0.75:2,
这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4.方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)
化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
5.尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。
32:16;48:40;0.15:0.3;
?设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。
四、巩固练习
(一)基础练习
1.教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2.教材第53页第6题。
(二)拓展练习(ppt课件出示)
学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加()。
2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()
?设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
五、课堂小结
这节课你有什么收获?还有什么疑问?
2023人教版六年级上册数学教案篇8
?教学目标】
1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题。
3.能借助数轴初步理解正数、0和负数之间的关系。
?重点难点】
负数的意义和数轴的意义及画法。
?教学内容】
负数的初步认识(1)(教材第2页例1)。
?教学目标】
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
?重点难点】
体会负数的重要性。
?教学准备】
多媒体课件。
?情景导入】
1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)
引出课题并板书:负数的初步认识(1)
?新课讲授】
教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在
数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。
?课堂作业】
完成教材第4页的“做一做”第1题。
组织学生独立完成,指名回答。
答案:-18℃温度低。
?课堂小结】
通过这节课的学习,你有什么收获?
?课后作业】
完成练习册中本课时的练习。
会计实习心得体会最新模板相关文章: