好文溜溜 >教案

人教版六年级数学教案5篇

在教学实施过程中,我们可以根据教案进行课堂管理和引导,我们要根据教案中的要求进行课堂实施,好文溜溜小编今天就为您带来了人教版六年级数学教案5篇,相信一定会对你有所帮助。

人教版六年级数学教案5篇

人教版六年级数学教案篇1

教学目的:使学生理解分数乘以整数的意义与整数乘法相同,掌握分数乘以整数的计算法则,能够正确地进行计算。

教具准备:教师把例1的图做成教具,以供教学演示时使用。

教学过程:

一、复习

1.做教科书第1页复习的第(l)题。

先让学生读题,独立列式计算。然后让学生说一说整数乘法的意义。使学生明确整

数乘法的意义是求几个相同加数的和的简便运算。

2.做教科书第1页复习的第(2)题。

学生独立计算。集体订正时,让学生说一说这两道题各有什么特点。使学生明确两道题都是同分母分数相加,而右边的题三个分数是相同的,同样是分母不变,分子相力。

教师:像右边的题求几个相同的分数相加的和有没有更简便的方法呢?这就是今天我们要学习的分数乘以整数。

二、新课

1.教学例1。

教师出示例1。先让学生说一说题意。然后根据学生说的题意出示准备好的教具。

教师:每人吃了干块,要求3个人一共吃了多少块,可以用什么方法计算?(可以用加法计算。)让学生列出加法算式。教师根据学生的回答,板书出计算过程。

用加法算:++===

教师:求3个相加的和还可以用乘法计算。你能根据整数乘法的列式方法列出这道题的乘法算式吗?

教师根据学生的回答,板书出乘法算式。

用乘法算:3

教师:这个算式中的是什么数?(相同加数。)

算式中的3是什么数?(相同加数的个数。)

教师:从这个算式中我们可以看出,分数乘以整数的意义与整数乘法的意义是相同的。都是求相同加数的和的简便运算。那么,这道题应该怎样计算呢?

教师让学生先按加法进行计算。教师根据学生的回答,在乘法算式的后面写出计算过程。

用乘法算:3=++=

教师:分子上的2十2十2用乘法算式怎样表示?(23。)

教师接着把计算过程写完。

用乘法算:3=++====(块)

2.总结分数乘以整数的计算法则。

教师引导学生对照计算过程、总结分数乘以整数的计算法则。

教师:如果用乘法代替加法,只看3和的计算过程,你发现分数乘以整数是怎么计算的?(分母不变,只用分子与整数相乘。)可以多让几个学生说一说。最后,概括出书上的结语:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

接着教师说用以后计算分数乘以整数时,不必再写加法算式,直接根据分数乘以整数的计算法则进行计算就可以了。同时指出,为了计算简便,上面的乘法计算能约分的要先约分。可以这样写。

3.做教科书第2页做一做中的题目。

第1题,让学生看图写算式,使学生明确求相同分数的和既可以用加法,也可似用乘法,从而进一步明确分数乘似整数的意义。

第2题、第3题,让学生独立计算,教师巡视,对学习有困难的学生进行个别,辅导。集体订正时,指名再说一说分数乘也整数的意义,分数乘以整数的计算法则,以及怎样使计算简便。对8如果有的学生没有先约分,要提醒学生应该先约分再计算。

由于的计算结果是假分数(),一般要化成带分数()。同时说明。以后在计算分数乘法时,乘得:结果如果是假分数的,一般要化成带分数或整数。

三、巩固练习

1.做练习一的第1题。

要求学生仔细审题,独立解答。教师巡视,了解学生掌握的情况,发现问题及时纠正。

2.做练习一的第4题。

先让学生独立解答,并引导学生回忆在整数计算中求一个数的几倍是多少用乘法计算。现在求一个分数的几倍是多少,根据分数乘以整数的意义也要用乘法计算。

3.做练习一的第7题。

先让学生独立解答,教师巡视,对学习有困难的学生进行个别辅导。集体订正时。

指名说一说是怎样想的。还可以让学生把(1)、(2)两题进行对比,说一说(1)和(2)的异同,使学生明确(1)和(2)都是求3个,都要用乘法计算。不同的是:

(1)求的是用法的具体数量,要注明单位名称吨;

(2)求的是用去的煤占这堆煤的几分之几,不带单位名称。

人教版六年级数学教案篇2

第一课时 负数

?教学目标】

1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题。3.能借助数轴初步理解正数、0和负数之间的关系。【重点难点】

负数的意义和数轴的意义及画法。

?教学指导】

1.通过丰富多彩的生活情境,加深学生对负数的认识。负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2.把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3.培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。【课时安排】 建议共分3课时:

负数的初步认识 2课时 在数轴上表示正数、0和负数 1课时 【知识结构】

第1课时 负数的初步认识(1)

?教学内容】 负数的初步认识

(1)(教材第2页例1)。【教学目标】

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

?重点难点】 体会负数的重要性。【教学准备】 多媒体课件。

?情景导入】

1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)

引出课题并板书:负数的初步认识(1)【新课讲授】 教学教材第2页例1。

(1)教师板书关键数据:0℃。(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

?课堂作业】

完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。答案:-18℃温度低。【课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第1课时 负数的初步认识(1)

0℃-3℃ 3℃(+3℃)

第2课时 负数的初步认识(2)

?教学内容】 负数的初步认识

(2)(教材第3页例2)。【教学目标】

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

?重点难点】

体会引入负数的必要性,初步理解负数的含义。

?情景导入】

教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?

组织学生讨论回忆上一课内容。

师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)【新课讲授】 1.教学例2。

(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。

(3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。

2.归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可

以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。

(3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

归纳:0既不是正数也不是负数,它是正数和负数的分界点。(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。

?课堂作业】

完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案: 正数有:+4+41 51负数有:-?

3【课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第2课时 负数的初步认识(2)

正数:+8 负数:-8

+4-4 +2000-2000 +500-500 +100-100 +20-20 0既不是正数也不是负数。

第3课时 在数轴上表示正数、0和负数

?教学内容】

借助数轴理解正数和负数的意义(教材第5页例3)。【教学目标】

1.借助数轴初步理解正数、0、负数。

2.初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

?重点难点】 认识数轴、0。

?情景导入】

教师用cai课件演示教材第5页的主题图。

教师:如何在一条直线上表示出他们运动后的情况呢? 【新课讲授】 教学例3。

(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?

组织学生在小组中议一议,然后汇报。

(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

(5)引导学生观察数轴

:①从0起往右依次是?从0起往左依次是?你发现什么规律?

②在数轴上分别找到

和-对应的点。如果从起点分别到和-处,应如何运动?

师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

?课堂作业】

1.完成教材第5页的“做一做”。学生独立练习,指名汇报。2.完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。

答案: 1.略

2.第4题:点a表示的数是-7;点b表示的数是-4;点c表示的数是-1;点d表示的数是3;点e表示的数是6。

?课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第3课时 在数轴上表示正数、0和负数

上面这样的直线叫做数轴。

2百分数

(二)【教学目标】

1.理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

2.在理解、分析数量关系的基础上,使学生能正确地回答有关百分数的问题。

?重点难点】

利用百分数解决实际问题。

?教学指导】

注意概念之间的联系与区别,以提高学生解决问题的能力。本单元的概念较多,教学时要突出重点,帮助学生弄清概念间的联系与区别。只有理解了百分数的含义,才能正确地运用它解决百分率、折扣、成数、税率、利率等实际问题。再如,百分数和分数虽然在本质上是相同的,但在意义上还是有一定的区别的:百分数表示两个数之间的关系;分数既可以表示一个具体的数、又可以表示两个数之间的关系。

?课时安排】

建议共分5课时:折扣1课时 成数1课时 税率1课时 利率

1课时 解决问题1课时

?知识结构】

第1课时 折扣

?教学内容】

折扣(教材第8页的内容,练习二第1~3题)。【教学目标】 1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

?重点难点】

1.会解答有关折扣的实际问题。

2.合理、灵活地选择方法,解答有关折扣的实际问题。【教学准备】 多媒体课件。

?情景导入】

圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)

?新课讲授】

1.教学折扣的含义,会把折扣改写成百分数。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)

①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:? ④橡皮,原价:1元,现价:?

(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

(5)讨论,找规律。

a.学生动手操作、计算,并在计算或讨论中发现规律。b.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。

(6)归纳,得定义。

a.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?

b.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)

c.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成),不便于计算和理解。10(7)练习。

①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实际问题。

出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

① 导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

② 找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式: 原价×85%=实际售价

③ 学生独立根据数量关系式,列式解答。

④全班交流。根据学生的汇报,板书:180×85%=153(元)答:买这辆车用了153元。

出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

① 导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?

② 学生试算,独立列式。③全班交流。根据学生的汇报,板书: 第一种算法:原价160元,减去现价,就是比原价便宜多少钱。

160-160×90% =160-144 =16(元)

第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10% =16(元)

重点引导学生理解第二种算法,知道现价比原价便宜了10%。3.典例讲析。

在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?分析:原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。

解:800×90%×80%=720×80%=576(元)答:最后的几辆车售价是576元。【课堂作业】

1.(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?

a.打八折怎么理解?是以谁为单位“1”? b.学生试做,讲评。(2)判断:

①商品打折扣都是以原商品价格为单位“1”,即标准量。()②一件上衣现在打八折出售,就是说比原价降低10%。()2.完成教材第8页“做一做”练习题。3.完成教材第13页练习二第1~3题。

说明:第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。

第2题,要注意指导学生理解元表示的实际含义,它与八折有什么关系。使学生明确元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。

答案:1.(1)240-240×80%=48(元)(2)① √ ② ×

2.第8页“做一做”:52 3.练习二第1题:

(1)×50%=(元)×50%=(元)1×50%=(元)3×50%=(元)

(2)(此题答案不唯一)可以买一种面包,也可以两种或两种以上合买。单独买各种打折后的面包:

①3÷=4(个)合买各种打折后的面包: ②3÷=6(个)33÷=2(个)○④3÷=2(个)??(元),再买1个打折后元的面包。

⑤可以买3个元的面包,买2个元的面包。可以买1个元的面包,买2个元的面包??第3题:分析:按原价的八折买,优惠价占二折,元占原价的20%,求出原价,用除法计算。解答:÷20%=48(元)【课堂小结】

通过这节课的学习你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第1课时 折扣

八五折180×85%=153(元)

九折160×(1-90%)=160×10%=16(元)

总结: 解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。

第2课时 成数

?教学内容】

成数(教材第9页内容)。【教学目标】 1.明确成数的含义。

2.能熟练的把成数写成分数、百分数。3.正确解答有关成数的实际问题。【重点难点】 1.成数的理解。2.成数的计算。【教学准备】 多媒体课件。

?情景导入】

农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”??

教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导)

?新课讲授】

1.介绍成数的含义,会把成数改写成分数,百分数。(成数:表示一个数是另一个数的十分之几,通称“几成”)(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?

(学生讨论并回答)教师板书:

成数 分数 百分数 二成 十分之二 20%(2)试说说以下成数表示什么?

①出口汽车总量比去年增加三成。这里的“三成”表示什么? ②北京出游人数比去年增加两成。这里的两成表示什么? 引导学生讨论并回答。

2.运用成数的含义解决实际问题。

(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

(2)分析题目,理解题意:

①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?

②找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式: 今年的用电量=去年的用电量×(1-25%)③学生独立根据关系式,列式解答。④全班交流。

方法一:350×(1-25%)=350×75%=350×=(万千瓦时)方法二:350×(1-25%)=350×75%=350×75/100=(万千瓦时)

?课堂作业】

完成教材第9页“做一做”。

答案:÷(1+20%)=÷=(人)【课堂小结】

这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?

?课后作业】

完成练习册中本课时的练习。

第2课时 成数

第3课时 税率

?教学内容】

税率(教材第10页有关纳税的内容,练习二第6、7题)。【教学目标】

1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2.在计算税款的过程中,加深学生对社会现象的理解,提高

学生解决问题的能力。

3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

?重点难点】 1.税额的计算。2.税率的理解。【教学准备】 多媒体课件。

?情景导入】 1.口答算式。

(1)100的5%是多少?(2)50吨的10%是多少?(3)1000元的8%是多少?(4)50万元的20%是多少? 2.什么是比率? 【新课讲授】

1.阅读教材第10页有关纳税的内容。说说:什么是纳税? 2.税率的认识。

(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。

(2)试说说以下税率表示什么。a.商店按营业额的5%缴纳个人所得税。这里的5%表示什么?b.某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么? 3.税款计算。

(1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

(2)分析题目,理解题意。引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。

(3)学生列出算式。

求一个数的百分之几是多少,用乘法计算。列式:30×5%(4)学生尝试计算。(5)汇报交流。

30×5%这个算式有两种计算方法。

方法1:把百分数化成分数来计算。30×5%=30×元)

方法2:把百分数化成小数来计算。30×5%=30×=(万元)

?课堂作业】

1.巩固练习:教材第10页“做一做”。2.完成教材第14页练习二第6题。答案:

1.(5000-3500)×3%=45(元)×3%=9(元)【课堂小结】

这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?

?课后作业】

1.完成练习册中本课时的练习。2.教材第14页第7题。

第3课时 税率

应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%=(万元)

5=(万100答:10月份应缴纳营业税约 万元。

第4课时 利率

?教学内容】

利率(教材第11页有关利率的内容)。【教学目标】

1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。

?重点难点】

1.掌握利息的计算方法。

2.正确地计算利息,解决利息计算的实际问题。【教学准备】 多媒体课件。

?情景导入】

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

?新课讲授】

1.介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。(例如:王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。)(注:这里不考虑利息税)

本金:存入银行的钱叫做本金。王奶奶存入的5000元就是本金。

利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。

3.学会填写存款凭条。

把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)

4.利息的计算。

(1)出示利息的计算公式: 利息=本金×利率×时间(2)计算方法:

若按照2012年7月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?学生计算后交流,教师板书:5000×%×2=375(元)加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。

?课堂作业】

本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。

?课堂小结】

通过本节课的学习,你学会了什么?什么叫本金?什么叫利息?什么叫利率?如何计算利息?

?课后作业】

1.完成练习册中本课时的练习。2.教材第14页第9题。

第4课时 利率 利息=本金×利率×时间

任何一种存款,在计算利息时,都要乘以存入的时间,如果存款的利率是年利率,计算时所乘时间单位应是年,如果存款的利率是月利率,计算时所乘时间单位应是月,不要一律按年计算。

第5课时 解决问题

?教学内容】

用百分数解决问题。(教材第12页例5)【教学目标】

1.熟练地掌握百分数应用题的数量关系,并能解决问题。2.培养学生良好的学习习惯。【重点难点】

认真审题,用百分数解决实际问题。【教学准备】 多媒体课件。

?复习导入】

前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。

口头列式。

(1)妈妈想买一件原价500元的裙子,五折之后这条裙子多少钱?

(2)爸爸这个月工资由原来的6000元涨了一成五,爸爸现在工资是多少?

(3)爸爸的月工资是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?

(4)小云将压岁钱1000元存入银行,存期为3年,年利率为%。到期支取时,小云一共能取回多少钱?

师:这几道题分别属于什么类型的应用题? 学生交流,汇报。【新课讲授】 教学例5。

1.学生读题,明确已知条件及问题,尝试说说自己的解题思路。

2.利用提问,引导学生思考回答,归纳出解题思路。教师:“满100元减50元”是什么意思?

引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。

解题思路:

(1)在a商场买,直接用总价乘以50%就能算出实际花费。(2)在b商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。

3.学生独立列出算式后,让他们计算并给出结果。板书:a:230×50%=115(元)b:230-2×50=130(元)a

提问:通过计算,我们知道了a商场更省钱,在什么时候两个商场价格差不多呢?

反思:看起来满100减50元不如打五折实惠。如果总价能凑成整百多一点就差不多了。

?课堂作业】

完成教材第12页“做一做”。学生独立完成,教师讲解。答案:a商场:120-40=80(元)b:120×60%=72(元)b商场更省钱。【课堂小结】

通过这节课,你有什么收获,你将如何运用到生活中呢? 【课后作业】

完成练习册中本课时的练习。

第5课时 解决问题

a商场:230×50%=115(元)b商场:230-50×2=130(元)115

人教版六年级数学教案篇3

设计说明

波利亚提出:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”亲身经历以探究为主的学习活动是学生学习数学的主要途径之一,《数学课程标准》中明确指出“探究学习是体验学习过程的一种重要学习方式”,这意味着教材是学生进行探究活动的重要素材。

本教学设计从六年级学生的生理、心理发展水平及学生的知识经验水平出发,为学生创造一个宽松和谐的情境,让学生通过一系列的活动提出问题、探究计算方法、对比优劣,用语言表达自己的收获,培养学生学习数学的能力。

1.把新知识转化为旧知识,完成知识的自我建构。

引导学生借助已有的经验去获取知识,这是最高的教学技巧。本节课通过学生自主探究、合作交流等方式,充分利用了以前学习的知识,根据数据的具体特点,学生借助转化思想把分数与小数进行互化和计算。在这个过程中,学生完成了知识的自我建构,同时也加深了学生对算法灵活性的理解与掌握。

2.在对比中完成方法优化。

算法多样化有利于学生发散思维的训练,但是在实际教学中,我们不能一味地发散思维而忽视学生思维优化的训练。在学生多种算法的对比中,引导学生发现最优算法,从而让学生明白:在计算小数乘分数的时候要根据数据的特点灵活选择算法。

课前准备

教师准备ppt课件学情检测卡

教学过程

⊙复习旧知,引入新课

1.计算。

15×=×15=×=

2.引入新课。

师:上面的题你会计算吗?它们各是什么类型的分数乘法?你能说一说是如何计算的吗?

(学生回答)

师:你们说得太好了!老师为你们知道的这么多而感到骄傲!今天我们就来学习一种新的运算。

(板书课题:小数乘分数)

设计意图:通过复习分数乘整数、分数乘分数的计算方法,使学生回顾已学的分数乘法的计算方法,为知识的迁移做好准备。

⊙讨论交流,探究新知

1.创设情境,获取信息。

(1)课件出示教材8页例5情境图(不含问题),组织学生交流图中的信息。(学生先在小组内交流,然后汇报)

(2)学生自由提出问题,小组交流后汇报。

(松鼠欢欢的尾巴有多长?松鼠乐乐的尾巴有多长?)

2.理解题意,列出算式。

(1)组织学生理解的意义。

师:同桌之间交流一下对题中的和问题的理解。

(交流汇报:尾巴的长度是身体长度的,求尾巴的长度,就是求身体长度的是多少)

(2)列出算式。

师:根据刚才的理解,你能用算式表示出这两个问题吗?

生1:求松鼠欢欢尾巴的长度,就是求2.1的是多少,可以用2.1×表示。

生2:求松鼠乐乐尾巴的长度,就是求2.4的是多少,可以用2.4×表示。

3.探究计算方法。

(1)探究2.1×的计算方法。

师:大家观察一下,这道题与我们前面学过的分数乘法有什么不同?(一个因数是小数,另一个因数是分数)

师:那么应该怎样计算呢?请大家在小组内讨论一下,然后汇报。

人教版六年级数学教案篇4

教材分析:

这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

教学目标:

1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

教学重点:

通过多种数学活动推导圆的周长公式,能正确计算圆的周长。

教学难点:

圆的周长与直径关系的探讨。

教学准备:

多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

教学过程:

一、把准认知冲突,激发学习愿望。

1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)

3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)

二、经历探究全程,验证猜想发现。

(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

1.谈话:那什么是圆的周长呢?(课件出示3个车轮)

2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

(二)交流测量圆周长的方法

1.学生拿出课前剪的圆,互相指一指它们的周长。

2.用什么办法测量它们的周长?(同桌交流方法)

3.指名到前面投影上展示测量周长的方法

①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向这里,圆滚动一周的长就是这个圆的周长。

②绕圈法。明确:线贴紧圆周,把多余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。

5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎么办?引发学生探究圆的周长与直径之间的关系。

(三)认识圆周率。

1.谈话:接下来同学们分4人小组,选择自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)

4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

6.学生说说从资料的介绍中知道了什么?(学生交流自己的学习所得)

7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出

的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。希望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

(四)推导公式

1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎么计算?(生:圆的周长=圆周率×直径)

2.谈话:如果圆的周长用大写字母c表示,那么这个公式用字母怎么表示?

3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎么变换?

4.齐读公式,加深印象。

三、刷新应用能力,总结巩固新知。

1.(课件出示第1题)学生口答两个圆的周长。

2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)通过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

3.(课件出示一个xx池)一个圆形xx池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

四、交流学习收获,课后拓展延伸

1.通过这节课研究圆的周长,你有什么收获?(学生全班交流)

2.谈话:现在如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎么做?(学生独立完成,后全班交流)有没有其它方法?(学生可通过计算解决,也可直接观察两个图比较)

3.师:种.种方法都可以帮助我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

教学反思:

一、“情境”与“知识”两条主线相互交融。

结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。

二、动手操作让学生亲身经历知识的形成过程。

动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。

三、数学阅读让学生感受数学的厚实的文化。

在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

人教版六年级数学教案篇5

教材分析

这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

学情分析

在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

教学目标

逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

教学重点和难点

1、 能确定单位“1”,理清题中的数量关系。

2、利用题中的等量关系用方程解答。

教学过程

一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。

⑴、梨的重量比苹果多了( )千克。

⑵、梨的重量是( )千克。

2、钢笔x元,比毛笔少了3元 。

⑴、钢笔比毛笔少了( )元。

⑵、毛笔是( )元。

3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授课

1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

(1)卖了 是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

(4)指名列出方程。解:设运来苹果x千克。

x-36=20

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有人。

(1+)=25

=25÷

=20

答:略。

三、小结

1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

会计实习心得体会最新模板相关文章:

人教版小学数学二年级数学教案5篇

人教版小学六年级下册数学教案和反思5篇

人教版小学二年级下册数学教案含教学反思5篇

小学一年级数学教案人教版上册教学反思5篇

人教版小学二年级数学下册教案及课后反思5篇

人教版小学六年级数学上册教案教学反思优秀5篇

人教版小学六年级数学上册教案教学反思5篇

人教版小学六年级数学上册教案及反思模板5篇

人教版七年级语文上册教案5篇

人教版四年级美术教案5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    53979

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。