教案的撰写过程让教师更加注重学生的综合素质培养,只有认真准备好详细的教案,教师才能在课堂上及时发现和解决学生的学习问题,以下是好文溜溜小编精心为您推荐的找特征数学教案6篇,供大家参考。
找特征数学教案篇1
教学目标:
1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。
2、培养分析、比较及综合概括能力。
3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。
教学重点:
掌握3的倍数的特征,正确判断一个数是否是3的倍数。
教学难点:
探索3的倍数的特征。
教学过程:
一、创设情景,明确目标(3分钟)
(一)创设情景,反馈预习
1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?
p:16、24、85、102、138、170、
2 的倍数:16、24、102、138、170
5的倍数:85、170
即是2的倍数又是5的倍数:170
师:说一说,你是怎么想的?
生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.
2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
3、教师板书课题:3的倍数的特征。
(二)明确目标,引领方法
1、出示学习目标(见学案),生自读目标。
2、同伴说说自己的理解,谈谈如何实现目标。
设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。
二、自主学习,同伴合作(15分钟)
(一)自主学习,自我感知
1、小棒游戏,探究规律
师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的'倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
2、小组合作探究
(1)用3根小棒摆一个数,这些都是3的倍数吗?
师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家看一下导学案的合作要求
①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
(2)用4根再摆出一些数,这些都是3的倍数吗?
(3)用6根再摆出一些数,这些都是3的倍数吗?
(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?
预设
第一组:用3根小棒摆:2、12、102,都分别是3的倍数。
第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。
第三族,用6根小棒摆:都是3的倍数。
问题:你发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师:关键要看小棒的根数,了不起的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
(5)真的是这么回事吗?以9为例摆摆看。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。
3、提升
师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?
师:小组内交流一下。
小组活动。
师:谁来说说?
生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。
生2:各个数位上数的和是3的倍数,这个数就是3的倍数。
生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。
师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。
4、探究原因,区别理解
(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
研究16
师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)
但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)
用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)
看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。
通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。
(2)问:为什么3的倍数特征要看各个数位相加的和呢?
举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?
一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,
138分一分,试一试,看看是不是3的倍数
一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。
(2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。
p:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)
三、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基??
1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、圈出3的倍数的数:42、78、111、165、655、5988
3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?
(预设:生1:1。
师:可以吗?还有其他答案吗?
生2:1,4,7都可以。
师:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。
师:恭喜你,三种可能都被你们猜中了!
师:如果它既是2的倍数,又是3的倍数呢?
生:24。
师:为什么只有24可以呢?
生:因为只有24既是2的倍数,又是3的倍数。)
(二)拓展训练,灵活创新
以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(ppt)
13689362754、123456789
老师:如果用各个数位之和是3的倍数,比较麻烦。
但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……
后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。
教师巡视,个别辅导。
(二)同伴讨论,互助共进
完成学案中“同伴合作,互助共进”内容。
重点交流学生所举的例子。
教师巡视,个别辅导。
设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。
四、师生共学,交流分享(5分钟)
(一)小组展示,彰显风采
指名小组进行汇报。
(二)师生完善,共同提高
1、学生纠正、补充、质疑
2、教师精讲、点拨、
在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。
设计意图通过教师的点拨完善学生对比的认识。
五、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基??
先由学生自主完成学案中相应的内容,再同桌交流,完善答案。
1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、看一看哪些是3的倍数:42、78、111、165、655、5988
原来判断是用除法,现在用加法。改革了
3、不用计算,能快速算出来那个式子有余数吗?
802、3;342、3
4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?p:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数
5、下面都是吗?789、345、654
都是,有什么特点?相邻、连续三个自然数。
是不是所有都是呢?举例:123.为什么呢?
654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。
6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。
找特征数学教案篇2
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的`百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
找特征数学教案篇3
学习内容
3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)
第1课时课型新授
学习目标
1、使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2、引导学生学会判断一个数能否被3整除。
3、培养学生分析、判断、概括的能力。
教学重点
理解并掌握3的倍数的特征
教学难点
会判断一个数能否被3整除。
教具运用
课件
教学方法
二次备课
教学过程
?复习导入】
1、学生口述2的倍数的特征,5的倍数的特征。
2、练习:下面哪些数是2的倍数?哪些数是5的倍数?
324 153 345 2460 986 756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
?新课讲授】
1、猜一猜:3的倍数有什么特征?
2、算一算:先找出10个3的倍数。
3×1=3 3×2=6 3×3=9
3×4=123×5=15 3×6=18
3×7=213×8=24 3×9=27
3×10=30……
观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)
提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→21 15→5118→81 24→42 27→72
教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
(以四人为一小组、分组讨论,然后汇报)
汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。
3、验证:下面各数,哪些数是3的倍数呢?
21054 216 129 9231 9876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的'倍数。(板书)
4、比一比(一组笔算,另一组用规律计算)。
判断下面的数是不是3的倍数。
34025003 1272 2967
5、“做一做”,指导学生完成教材第10页“做一做”。
(1)下列数中3的倍数有。
143545100 332 876 74 88
①要求学生说出是怎样判断的。
②3的倍数有什么特征?
(2)提示:
①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)
②接着再考虑什么?(最小三位数是100)
③最后考虑又是3的倍数。(120)
?课堂作业】
完成教材第11~12页练习三的第4、6、7、8、9、10、11题。
?课堂小结】
同学们,通过今天的学习活动,你有什么收获和感想?
?课后作业】
完成练习册中本课时练习。
板书设计第2课时3的倍数的特征
一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。
?作业设计】
学习目标,教学方法,数学,教师,能力。
找特征数学教案篇4
教学目标:
探索2、5倍数的特征,初步理解奇数、偶数的概念。
教学重点:
发现2、5倍数的特征并灵活运用
教学过程:
一、导入新课
师:奥运带给我们的除了那种奋勇拼搏的体育精神,还有一点那就是要提高人们的健身意识。过一段时间我们学校要举行团体操表演,有哪些表演形式呢?我们来看一看吧
(学生认真看表演情况。)
二、探究新知
1、活动一:师:从图中你们知道了哪些信息?还能提出什么问题?
学生观察情境图,说出自己通过观察发现的信息,提出问题,全班交流。
2、活动二:师:我们首先解决“各项表演分别可以选派几人参加”这个问题。请你们想一想,每个方队得人数有没有规律?到问题时要仔细分析、验证,不能轻易下结论。
学生独立思考,然后交流。学生的思考可能停留在图中呈现的人数上,3个5、6个2、5个3。教师可适时引导:各队的人数与2、3、5有没有关系?
3、活动三;
师:在1—100的自然数中,2的倍数有那些?5的倍数有哪些呢?3的倍数有哪些呢?先独立思考,然后小组讨论。
学生自主思考后,可能采用无序排列、有序列举、在百数表中 圈出或涂色等解决问题的方法。
4、活动四
师:同学们了不起,用这么多办法找出了100以内2、5的倍数,那你们有没有发现2的倍数、5的倍数都是一些什么样的数?
师:像2、4、6、8、10、12……都是偶数,1、3、5、7、9、11……都是奇数。
师:你能再说出几个偶数、奇数的例子。
学生独立思考,从不同的角度思考2、5的倍数的特征。
学生认真听讲
学生举例,相互交流。
三、课堂练习
自主练习第1、2题。学生自主练习,教师巡视指导,全班交流。
第3题数学游戏:应用今天学到的知识,看数字卡片说一句话。如:20是偶数,是2的倍数,同时也是5的倍数等。同位两人轮流出卡片,参与游戏。
四、课后小结
师:请同学们说一说这节课你学到了些什么?还有什么问题?你对自己有什么评价?
找特征数学教案篇5
教学目标:
1.知识与技能:使学生理解并掌握2和5的倍数的特征,能准确判断一个数是不是2或5的倍数以及理解并掌握奇数、偶数的含义,能准确判断一个数是奇数还是偶数。
2.过程与方法:让学生在理解2、5的倍数的特征的过程中,使学生的探索、推理、概括等能力得到培养和提高。
3.情感态度与价值观:在分析问题和解决问题的过程中,使学生得到成功的体验和快乐,并帮助学生建立独立获取数学知识和解决问题的信心。
教学重点:
掌握2和5的倍数的特征,理解奇数和偶数的意义。
教学难点掌握2和5的倍数的特征,会判断一个数是不是2或5的倍数。掌握奇数和偶数的含义,判断一个数是奇数还是偶数。会归纳总结其中的规律和方法。
教学工具:
课件、百数表、数字卡片
教学过程:
一、以旧引新,铺垫迁移
师:同学们,在学习新课之前呢,我们先来复习一下上节课我们学的知识。谁来说一说,我们上节课学了什么知识?
生:上节课我们学了因数和倍数。
师:是的,那什么是因数?什么是倍数?他们有什么关系?他们又有什么特点呢?哪位同学来说一说,让老师看一看谁上节课学的最棒。(鼓励学生举手发言,带动学生参与课堂的积极性)
①在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
②因数与倍数是相互依存的。
③一个数的最小因数是1,它的因数是它本身。一个数的最小倍数是它本身,没有倍数。
④一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
师:这位同学说的很对。那我们来做一做下面这道练习题。看一看同学们对这些知识的应用情况怎么样?
做一做
写出下面每个数的因数,然后再写出每个数的倍数(至少写4个)。
20 因数: 倍数:
25 因数: 倍数:
28 因数: 倍数:
20因数1、2、4、5、10、20 倍数20、40、60、80
25因数1、2、25 倍数25、50、75、100
28因数1、2、4、7、14、28 倍数28、56、84、112
师:同学们总结的很完整,说明同学们对上节课学的知识总结的都很好。下面同学们再按要求做一做下面两道题。
(1)从小到大写出10个2的倍数?
生:2的倍数有:2、4、6、8、10、12、14、16、18、20。
(2)从小到大写出10个5的倍数?
生:5的倍数有:5、10、15、20、25、30、35、40、45、50。
师:那同学们能看出来2和5的倍数有什么特征吗?
生:看不出来。
师:那同学们就和老师一起探索一下2和5的特征,看一看我们会发现什么有趣的事情?
2 举例交流,探索新知
二、5的倍数的特征
(1)引入百数表
师:在自然数中,5的倍数有多少个?
生:无数个
师:我们不能一个一个地研究,怎么办呢?
生:选择一部分数进行研究
师:那我们就先在1-100这一百个数中研究5的倍数的特征。
(2)出示百数表,在这些数中找出5的倍数,涂上红色。
(3)师:观察5的倍数,你有什么发现?
生:我们发现100以内5的倍数的个位都是0或者5的数。
(4)师:除了这些数以外,其它5的倍数也有这样的特征吗?我们来举例验证一下。
例1:判断105 225 160 380是不是5的倍数,并说出理由。
生:105个位是5,105÷5=21,105是5的倍数。
225个位是5,225÷5=45,125是5的倍数。
160个位是0,160÷5=32,160是5的倍数。
380个位是0,380÷5=76,180是5的倍数。
师:这进一步验证了3位数中个位是5或者0的数也是5的倍数。那我们来看一看个位不是0或者5的数是不是5的倍数呢?
例2: 202 136 343 564是不是5的倍数?
生:202÷5=40.4,202不是5的倍数。
136÷5=27.2,136不是5的倍数。
343÷5=68.6,343不是5的倍数。
564÷5=112.8,564不是5的倍数。
师:通过以上的两道例题,谁来概括一下5的倍数到底有什么特征?
生:个位上为0或5的数都是5的倍数。
师:是的,学习了5的特征有什么好处?
生:能更快的判断出一个数是不是5的倍数。
师:是的,那我们就来验证一下,同学们猜猜下面的数是不是5的倍数。
练一练
下面的数都是5的倍数吗?
75、280、1325、172、52460
生:75、280、1325、52460都是5的倍数,因为它们的个位都是0或者5;172不是5的倍数,172个位是2,而且172÷5=34.4,不是整数。
师:我们都知道了5的倍数的特征,那同学们知道2的倍数的特征吗?
生:不知道。
师:下面我们就来学习一下2的倍数的特征。请同学们再次拿出百数表。
(二)2的倍数的特征
师:根据研究5的特征的经验,同学们猜一猜2的倍数可能会有什么特征呢?
生:可能和数的个位有关系,个位是几的数是2的倍数特征。
师:同学们猜想的很有道理,但也只是猜想,到底是不是呢,我们来验证一下。
出示百数表,找出2的倍数,涂上绿色。
师:同学们观察一下2的倍数特征,你发现了什么?
生:100以内2的倍数的个位都是2、4、6、8、0的数。
师:是的,除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。
例3:判断124 282 360 458 396是不是2的倍数,并说明理由。
生:124÷2=62,124是2的倍数;
282÷2=141,282是2的倍数;
360÷2=180,360是2的倍数;
458÷2=229,458是2的倍数;
396÷2=198,396是2的倍数。
它们都是个位是0、2、4、6、8的数,而且都是2的倍数。
师:所以2的倍数有怎样的特征?
生:个位为0、2、4、6、8的数,都是2的倍数。
师:很好,那请同学们做一做下面一道题,判断一下哪个是2的倍数,哪个不是,把它们归归类。
例4:做一做
48、125、91、6、307、554、920、43
是 2的倍数:48、6、554、920;
不是2的倍数:125、91、307、43
师:通过以上的练习,相信大家都能确认2的倍数的特征了。学习完了2的倍数的特征,老师还要告诉你们一个有趣的规律。同学们想不想知道啊?(以此引入奇数和偶数的概念)
三、探究深入,总结概念
(一)奇数与偶数
师:我们已经掌握了2的倍数的特征。那这里呢,就出现了这样的一个概念:在整数中,是2的倍数的数叫做偶数(0也是偶数),其它不是2的倍数的数叫做奇数。例如,2是偶数,3是奇数。14是偶数,15是奇数。下面我们来做一做下面的练习题,进一步感受奇数和偶数的概念。
练习三
1、下列数中,那些是奇数?那些是偶数?
33 98 355 0 123 881
8089 1000 988 565 3678 677
生:奇数:33、355、123、881、8089、565、677
偶数:98、0、1000、988、3678
(二)2和5的倍数的特征
师:做一做下面的练习题,看看我们会发现什么?
做一做
下面哪些数是2的倍数?那些数是5的倍数?哪些数即是2的倍数,也是5的倍数?
24 35 67 90 99 15 106
60 75 130 521 280 6018 8100
生:2的倍数:24、90、106、60、130、280、6018、8100
5的倍数:35、90、15、60、75、130、280、8100
即是2的倍数,又是5的倍数:90、60、130、280、8100
师:做完这道题,你发现了什么?
生:即是2的倍数,又是5的倍数的数个位都是0。
师:是的,数学就是这么有意思,可以从不同的角度发现这么多有趣的规律。
4 及时练习,巩固提高
师:今天我们学了5的倍数的特征,2的倍数的特征。通过2的倍数的特征,我们又总结出了奇数和偶数的概念。还有即是2的倍数,又是5的倍数的特征。下面我们做一做下面的练习题,巩固一下今天所学内容。
练一练。
1、按要求用2、3、7、0四个数字组成三位数。(有几个写几个)
2的倍数有
5的倍数有
同时是2和5的倍数的数有
生:2的倍数有:372、732、230、320、302、720、270、702、370、730;
5的倍数有:230、270、370、320、730、720;
同时是2和5的倍数的数有:230、270、370、320、730、720。
2、一个三位数27( ),
(1)当括号里填( )时,此数是2的倍数。
(2)当括号里填( )时,此数是5的倍数。
生:(1)0、 2、 4、 6、 8
(2)0、 5
四、课后小结
1.提问:这节课你都获得了哪些知识?
学生:学习了2的倍数的特征,5的倍数的特征。总结出了奇数和偶数的概念。
2.教师归纳整理。
师:5的倍数的特征:个位上是0或者5的数,都是5的倍数;
2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
奇数:整数中,不是2的倍数的数叫做奇数;
偶数:整数中,是2的倍数的数叫做偶数;
即是2的倍数,又是5的倍数的特征:个位上是0的数,都即是2的倍数,又是5的倍数。
找特征数学教案篇6
一、教学目标
?知识与技能】
理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。
?过程与方法】
经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。
?情感、态度与价值观】
在猜想论证的过程中,体会数学的严谨性。
二、教学重难点
?重点】3的倍数的特征,判断一个数是否是3的倍数。
?难点】3的倍数的数的`特征的归纳过程。
三、教学过程
(一)导入新课
复习导入:我们是如何研究2、5的倍数的特征的?
引出继续利用百数表研究3的倍数的特征并出示课题。
(二)讲解新知
组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?
学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。
组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。
提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。
师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(三)课堂练习
1、判断下面的数是否为3的倍数。
24 58 46 96
2、尝试在每个数后面加一个数使这个三位数成为3的倍数。
(四)小结作业
提问:今天有什么收获?
带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。
课后作业:
思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。
会计实习心得体会最新模板相关文章:
★ 找影子的教案6篇