我们的教案应该具备一定的创新性,使教学更富有活力,教案的灵活调整可以根据学生的反馈和表现来进行,以下是好文溜溜小编精心为您推荐的人教版小学六年级下册数学教案及反思8篇,供大家参考。
人教版小学六年级下册数学教案及反思篇1
课前准备
ppt课件
教学过程
⊙谈话揭题
上节课我们复习了小数,那么小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?希望通过本节课对分数、百分数的相关知识的复习,你们能找到正确的答案。[板书课题:分数(百分数)的认识]
⊙回顾与整理
1.分数的意义、分数单位及分数与除法的关系。
(1)师:什么是分数?什么是分数单位?
明确:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。
(2)师:分数与除法有着怎样的关系?
预设
生1:除法中的被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。
生2:因为0不能作除数,所以分数的分母不能为0。
2.真分数、假分数的特点。
(1)真分数的分子比分母小,真分数的分数值小于1。
(2)假分数的分子大于或等于分母,假分数的分数值大于或等于1。
3.分数的基本性质、约分和通分。
(1)师:什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
(2)师:什么是约分和通分?
预设
生1:把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。
生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(3)师:什么是最简分数?
分子和分母是互质的分数,叫做最简分数。
4.小数、分数、百分数的互化。
(1)小数、分数、百分数的互化。
①小数化成分数。
原来有几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约分。
例如:0.7= 1.25==
②分数化成小数。
用分子除以分母,能除尽的就化成有限小数;有的不能除尽,不能化成有限小数,一般保留三位小数。
例如:=3÷4=0.75 =3÷25=0.12
=3÷7≈0.429 =4÷9≈0.444
③小数化成百分数。
只要把小数点向右移动两位,同时在末尾添上百分号即可。
例如:0.23=23% 1.7=170%
④百分数化成小数。
只要把百分号去掉,同时把小数点向左移动两位即可。
例如:120%=1.2 85%=0.85
⑤分数化成百分数。
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
例如:≈0.143=14.3%
⑥百分数化成分数。
把百分数改写成分数,能约分的要约成最简分数。
例如:85%==
(2)师:谁能举例说一说什么样的分数能化成有限小数?
预设
生1:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。
例如:=0.65,分母中只含有质因数2和5。
=0.8125,分母中只含有质因数2。
生2:如果一个最简分数的分母中含有除2和5以外的其他质因数,这个分数就不能化成有限小数。
例如:≈0.056
分母中除质因数2以外,还有质因数3。
人教版小学六年级下册数学教案及反思篇2
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备 ppt课件
学生准备 玻璃杯 直尺 水 实验记录单
教学过程
⊙复习引入
1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1.在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2
10
15
20
30
60
…
水的高度/cm
30
20
15
10
5
…
①表中有哪两种量?
②水的高度是怎样随着杯子底面积的大小变化而变化的?
③相对应的杯子的底面积与水的高度的乘积分别是多少?
(2)学生思考后在小组内交流。
(3)全班交流。
预设
生1:有杯子的底面积和水的高度这两种量。
生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。
生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。
(4)明确什么是成反比例的量。
因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。
人教版小学六年级下册数学教案及反思篇3
教学内容:
成数(课本第9页例2)
教学目标:
1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。
2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。
教学重点:
理解成数的意义。
教学难点:
解决解答有关成数的实际问题。
教学过程:
一、复习
1、填空
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育
三、探究体验
(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。
1、让学生尝试把二成及三成五改写成百分数。
2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。
3、练习:将下列成数改写成百分数。
二成=( )%; 四成五=( )%; 七成二=( )%。
(二)教学例2
1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?
3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350(1-25%)=262.5(万千瓦时)
或者引导学生列出
350-35025%=262.5(万千瓦时)
四、巩固练习
1、三成=( )%; 五成六=( )%; 八成三=( )%;
2、第9页做一做
3、解决问题
(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?
(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)
(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?
(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?
五、课堂总结
这节课你收获了什么?
人教版小学六年级下册数学教案及反思篇4
教案设计
设计说明
图形的放大与缩小是比的实际应用。根据《数学课程标准》中“要培养学生的应用意识”的理念,本节课在教学设计上积极引导学生用数学的眼光看待生活中的放大与缩小现象。为学生提供充分的探索空间,培养学生的空间观念。基于以上教学理念,本节课在教学设计上有以下特点:
1.联系生活实际,体会图形放大与缩小的应用价值。
教育家卢梭认为:教学应让学生从生活中,从各种活动中进行学习,通过与生活实际相联系,获得直接经验。因此,在教学中,注重数学与生活的联系,有效利用教材中的图片,使学生了解无论是照相还是用放大镜看书、用投影仪放大图表,都离不开图形的放大与缩小知识,这部分知识有很强的实用价值。
2.在观察、操作中理解图形放大与缩小的意义和方法。
在数学教学中,让学生经历观察、操作、交流的过程,可以帮助学生获得直接的感性认识,有利于学生对知识的理解。基于以上认识,教学中,注意引导学生借助对例题的探究,弄清图形放大与缩小的意义和方法,并能在方格纸上按一定的比画出放大与缩小后的图形,使学生认识到把一个图形按一定的比放大或缩小,只要把图形的各边按一定的比放大或缩小即可。同时,也使学生认识到把一个图形按一定的比放大或缩小后,只是图形的大小改变了,形状没有发生变化,从而真正理解并掌握图形的放大与缩小的意义。
课前准备
教师准备 ppt课件 纸卡
学生准备 方格纸
教学过程
情境导入
1.观察、感受图形的放大与缩小。
(1)观察、感受。
①出示写有“图形的放大与缩小”的纸卡。
提问:纸卡上写的是什么?
(纸卡上的字为小5号字,学生跃跃欲试后会有些失望,因为看不清)
②把纸卡放到展台上,调整缩放键,逐渐调大。
提问:纸卡上写的是什么?
生抢答:图形的放大与缩小。
(2)引导学生思考。
师:为什么纸卡上的字之前看不清,而现在看清了呢?
生:因为字被放大了。
2.结合生活实际,导入新课。
(1)过渡:生活中经常会遇到图形的放大与缩小现象,下面就让我们一起来感受一下图形的放大与缩小。
(课件出示教材59页主题图)
这些现象中,哪些是把物体放大?哪些是把物体缩小?
预设
生1:图1是把物体缩小。
生2:图2、图3、图4都是把物体放大。
(2)导入新课。
今天,就让我们从数学的角度一起来探究图形的放大与缩小现象。(板书:图形的放大与缩小)
设计意图:创设一个感受图形的放大与缩小的情境,激发学生从数学的角度探究图形的放大与缩小现象的兴趣,使学生在观察、体验中初步感知图形的放大与缩小。
探究新知
1.探究把图形放大的意义和方法。
(1)课件出示教材60页例4。
(2)思考、交流。
提问:“按2∶1放大”是什么意思?
生:“按2∶1放大”就是把图形的各边的长放大到原来的2倍。
(3)画图方法。
①提问:以正方形为例,具体画图时应该怎样做?
预设
生:正方形原来的边长是3个单位长度,现在按2∶1放大后,边长应该是6个单位长度。
②画图。
(学生独立画放大后的正方形,教师巡视指导)
(4)完成例4。
①怎样画长方形?
预设
生:把长方形的长和宽分别放大到原来的2倍,画出长方形。
②怎样画三角形?
预设
生:把直角三角形的两条直角边分别放大到原来的2倍后,连接两条直角边的端点。
(可引导学生用数方格法验证,当直角三角形的两条直角边放大到原来的2倍时,直角三角形的斜边也放大到原来的2倍)
人教版小学六年级下册数学教案及反思篇5
目标:
1、 理解圆柱体积公式的推导过程,掌握计算公式。
2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。
3、 在公式推导中渗透转化的思想。
重点:
理解圆柱的体积公式的推导过程。
难点:
圆柱体积的计算。
用具:
课件、圆柱模型。
过程:
1、 教师提问。
(1)什么叫物体的体积?怎样求长方体的体积?
(2)圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?
2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)
1、 教学例5。
讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)
②通过刚才的实验你发现了什么?
a、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。
b、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。
c、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。
(4)学生根据圆的面积公式的推导过程,进行猜想。
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)通过以上的观察,启发学生说出发现了什么。
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
③用字母表示圆柱的体积公式。(板书:v=sh)
2、 教学例6。
出示教材第26页例6。
(1)学生读题,理解题意。
(2)教师:要知道能否装下这袋奶,首先要计算出什么?
学生:杯子的容积。
(3)指明要计算杯子的容积,学生在练习本上完成。
杯子的底面积:3.14×(8÷2)2=50、24(cm2)
杯子的容积:50、24×10=502、4(ml)
答:因为502、4大于498,所以杯子能装下这袋牛奶。
3、 教学例7。
师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)
生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。
生2:我们可以先转化成圆柱,再计算瓶子的容积。
师:怎样转化呢?说说你的想法。
学生可能会说:
瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。
也就是把瓶子的容积转化成了两个圆柱的体积。
……
师:尝试自己解答一下。
学生尝试解答;教师巡视了解情况。
组织学生交流汇报:
瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25
=1256(cm3)
=1256(ml)
答:这个瓶子的容积是1256ml。
只要学生解答正确就要给予肯定,不强求算法一致。
?设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】
师:在本节课的学习中,你有哪些收获?
学生可能会说:
利用“转化”可以帮助我们解决问题。
我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。
在五年级时,计算梨的体积也是用了转化的方法。
……
?设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】
圆柱的体积
长方体的体积=底面积×高
↓ ↓ ↓
圆柱的体积=底面积×高
v=
a类
1、填表。
底面积s(平方米) 高h(米) 圆柱的体积v(立方米)
15 3
6.4 4
2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?
(考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)
b类
两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?
(考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)
课堂作业新设计
a类:
1、 45 25.6
2、 314平方米 471立方米
b类:
54立方分米
教材习题
第25页“做一做”
1、 75×90=6750(cm3)
2、 3.14×(1÷2)2×10=7.85(m3)
第26页“做一做”
1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356l 0.75361 不够。
2、 3.14×(0.4÷2)2×5÷0.02≈31(张)
第27页“做一做”
3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6ml
第28页“练习五”
1、 3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340ml
3、 3.14×(3÷2)2×0.5×2=7.065(m3)
4、 80÷16=5(cm)
5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨
6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)
体积:3.14×(6÷2)2×12=339.12(cm3)
表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)
表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)
体积:3.14×(14÷2)2×5=769.3(cm3)
7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)
8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58ml
932、58800 不够
9、 81÷4.5×3=54(dm3)
10、 3.14×(10÷2)2×2=157(cm3)
11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304l 1.13041 能装满。
12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)
13、 30×10×4÷6=200(cm3)=200(ml)
14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)
15、 第四个圆柱的体积最小;第一个圆柱的体积最大。
发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。
人教版小学六年级下册数学教案及反思篇6
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。
【教学目标】
1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。
2、能按一定的比,将一些简单图形进行放大或缩小。
【教学重点】图形的放大与缩小。
【教学难点】按一定的比把图形放大或缩小。
【教学准备】多媒体
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例尺?
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、怎样求比例尺?
求图上距离和实际距离的最简整数比。
3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?
(1)学生尝试独立求比例尺。
(2)汇报交流
50c:40=50c:4000c=1:80
(3)你是怎么想的?
二、关键点拨
1、求比例尺。
(1)怎样求一幅图的比例尺?
先写出图上距离与实际距离的比,再化成最简整数比。
(2)比例尺有什么特点?
比例尺是前项或后项为1的比。
(3)比例尺可以怎样表示?
数值比例尺和线段比例尺。(1:500000)或(线段比例尺)
2、求实际距离。
(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?
(2)学生尝试独立列比例解答。
(3)汇报交流
解:设这两地之间的实际距离大约是x厘米。
=
=5000000
5000000c=50
(4)你觉得在求实际距离时要注意什么问题?
实际距离一般用千米做单位。
3、求图上距离
(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?
(2)学生尝试画操场的平面图。
(3)汇报交流
你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】
三、巩固练习
1、课本第53页练习八第1题求比例尺。
2、课本第52页做一做第1题。
3、课本第52页做一做第2题。
四、分享收获 畅谈感想
这节课,你有什么收获?听课随想
人教版小学六年级下册数学教案及反思篇7
?教学内容】人教版小学六年级数学下册。
?教学目标】
1、在丰富的现实情境中认识生活中的折扣现象,理解折扣的含义。
2、能把折扣问题转化成百分数问题,并能准确、灵活地解决生活中的折扣问题。
3.在探索解决“折扣”问题的过程中,体验百分数在现实生活中的应用,获得用数学解决问题的成功体验,提高对数学学习的兴趣。
?教学重点】
理解折扣的意义,感受折扣在生活中的运用,能正确解决生活中简单的折扣问题。
?教学难点】能应用“折扣”的知识灵活解决生活中的相关问题。
?教学准备】多媒体课件
?教学过程】
一、激情导课
1、导入课题
(1)、孩子们!五一和国庆期间,商家为了招揽顾客,经常采用一些促销的手段,你见过哪些促销手段?(降价,打折、买几送几、送货上门等)
(2)、有些同学提到了“打折”,大家看,(出示课件) 你认为打折之后去购买商品,是比原来便宜了还是贵了?
(3)、揭示课题:今天,我们就来学习与打折有关的数学问题——折扣。(板书课题)
2、明确目标
师:对于折扣,你知道些什么?还想知道什么?随着学生的回答教师出示学习目标:(1)、知意义 。(2)、会运用
刚才有同学提到他的理解,那是这样吗?在这节课中你一定会找到答案的。好,让我们进行今天的第一个学习任务。
二、民主导学
任务一:理解折扣的意义
1、任务呈现:请大家自学书97页第一自然段,完成下面的问题,有困难的组内互相帮助。
(1)什么是打折?
(2)几折表示( )也就是( )
(3)八折=( — )=( )% 九五折= ( — )= ( )﹪
(4)八折表示什么?九五折表示什么?
2、自主学习
学生自学后完成,如遇到困难可以组内互相帮助。
3、展示交流
(1)明确”打折”的含义
打折就是商店降价出售,几折就是十分之几,百分之几十。
(2)明确“九折”“八五折”的含义
九折就是现价是原价的十分之九,百分之九十。
八五折表示现价是原价的十分之八点五,百分之八十五,谁是谁的85%呢?谁能说一说八五折的具体含义?
(3)及时巩固
也就是说,折扣都可以转化成百分数,是这样的吗?那你能不能很快地将下面的折扣改写成百分数。你能说说这些折扣的意思吗?(课件出示图)用谁是谁的百分之几描述。
七折 六五折 八八折
(4)小结
同学们,我们说了这么多折扣的意思,几折就表示十分之几,也就是百分之几十。如八五折:现价是原价的85%(或十分之八点五)
刚才我们了解了这么多的折扣知识,下面看我们能不能利用这些折扣知识帮解决几个实际问题。
任务二:用折扣解决问题(例题4(1))
1、出示例4的第(1)题:
爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售,买这辆车用了多少钱?
小结:孩子们,你们听明白了吗?他是把折扣问题转化成百分数问题解决的。看来呀,关于折扣的问题我们只要把它转化成百分数问题就能顺利解决了。看来这道题没有难倒大家,好,来道难点的。
2、任务呈现
幻灯出示例4的第(2)题:
爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
2、自主学习
学生独立思考,自主解决。
3、展示交流
是啊!九折就是便宜了一折,我们是说打九折销售,在国外有些国家就说成降价10%。说法是不一样但意思一样吗?六折就是便宜了几折,八五折呢?
4、比较上两题的共同点和不同点,请大家仔细观察我们刚才这两道题,有什么共同点和不同点,都已知了原价的折扣,求现价和便宜了多少钱,在解答方法上我们都是求一个数的百分之几是多少。. 折扣问题的应用题其实就是百分数应用题,解答时可以按照百分数应用题的方法去解答。
5、同学们!通过这几次的购物经历,老师发现大家理解了折扣的含义,其实关于折扣还有很多的小奥秘。如果商场打折你最想让他打几折呢?也就是折扣数越小越好,刚才有同学提到0折,其实0折并不是不花钱,是什么意思呢?大家可以上网查一查。
看这道题,同一款米奇书包,在a店打八折,在b店打九折,如果是你,你会到哪个店去买?
那如果老师告诉你这个书包的原价,你还会这样选择吗?a店原价95元,b店原价80元。想想看你要去哪个店去买?非常好,大家都拿出笔来开始计算了。
小结:同学们灵活运用折扣知识解决了这么多的问题,真不错。看来我们在购物时,不能仅看折扣,还要看这件商品原价,当然我们还要注意这件商品的质量、你是否需要等等,不要被商家的促销手段所蒙骗,做一个理智地消费者。
好,这节课你学得怎么样呢?我们检测一下吧?
三、检测导结
1、目标检测
一、填空、
1、七折=( )%=( — ) 95%=( )折。
2、九五折表示现价是( )的( )%。
3、一件衣服打六八折销售,就是便宜了原价的( )%
四、解决问题
一个书包原价100元,现在商店打八八折销售,买这个书包现在要花多少钱?便宜了多少钱?
2、结果反馈
学生独立完成后,教师出示答案,订正。
3、反思小结
折扣是百分数在生活中应用的一个例子,百分数在生活中的应用还非常广泛,这些知识都等着我们去发现、去思考、去探索,希望大家能做个有心人!可不要让自己的学习成绩打了“折扣”哦!
人教版小学六年级下册数学教案及反思篇8
教学内容:
教科书p23-26的内容,p24做一做,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:
掌握圆锥的特征。
教学难点:
正确理解圆锥的组成。
教具准备:
每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识 (直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页做一做的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
补充习题
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:
观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
会计实习心得体会最新模板相关文章: