我们的教案应该充分融入现实生活中的例子,增强学习的实用性,在设计教案时,我们要充分考虑学生的兴趣,下面是好文溜溜小编为您分享的六年级数学比的教案6篇,感谢您的参阅。
六年级数学比的教案篇1
教学内容:
百分数的应用(一)教材第23——24页
教学目标:
1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”。提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
教学重点:会计算实际问题中“增加百分之几”或“减少百分之几”。
教学难点:在具体情境中理解 “增加百分之几”或“减少百分之几”的意义。
教学过程:
一、 创设情境
1、 关于百分数,我们已学过那些知识?
根据学生回答,板书如下:
百分数的意义
小数百分数分数之间的互化
百分数的应用
利用方程解决简单的百分数问题
2、 引入:从这节课开始,我们继续学习有关的百分数的知识。
板书课题:百分数的应用(一)
二、 新知探究
问题引入:盒子里有45立方厘米的水结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?
1、 引导学生认识“水结成冰,体积会增加”这种物理现象,并找出题中的条件与问题。
2、 你认为“增加百分之几”是什么意思?
指导学生画线段图理解“增加百分之几”的意思是:冰的体积比原来水的体积增加(多)的.部分是水的百分之几
3、 学生自主解决问题,师巡视,个别指导。
4、 合作交流:
方法一:(50-45)÷45 方法二: 50 ÷45 ≈ 111%
=5÷45 111%-100%≈11%
≈11%
指名学生说出自己具体的想法:
方法一:先算增加了多少立方厘米,再算增加了百分之几。
方法二:先算冰的体积是原来水的体积的百分之几,再算增加百分之几。
5、 即时练习
指导学生完成第23页“试一试”。
重点引导学生理解“降低百分之几”的意思是降低的价钱数目占原来价钱的百分之几。
三、 总结:
求一个数比另一个数增加或减少百分之几的应用题的方法:
(1) 先求一个数比另一个数增加或减少的具体量,再除以单位“1”。即:两数差额÷单位“1”
(2)先求一个数是另一个数的百分之几,再把另一个数看作单位“1”即100%根据所求问题两者用减法运算。
四、练习提高
指导学生完成第24页练一练第1,2,3,4,5题。
六年级数学比的教案篇2
教学内容:教材第37页例5、试一试和练一练,练习七第4~日题。
教学要求:
1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。
2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。
教学重点:进一步认识比例尺。
教学难点:根据比例尺求图上距离或实际距离。
教学过程:
一、揭示课题
1.提问:什么是比例尺,
2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。
3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。
二、教学新课
1.教学例5。
出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的.过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的倍数关系来解答,也可以按图上距离 :实际距离=比例尺列出比例,用解比例的方法就可以求出结果。
2.做练一练第1题。
指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?
3.教学试一试。
出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离 :实际距离=比例尺列出比例,再解比例求出结果.
4.做练一练第2题。
指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。
5.做练习七第4题。
让学生做在练习本上,然后口答,老师板书。
6.做练习七第5题。
学生完成在练习本上。
三、课堂小结
这节课学习了什么内容?你学到了些什么?
四、布置作业
课堂作业:练习七第6、8题。
家庭作业:练习七第7题。
六年级数学比的教案篇3
教学目标
1、使学生进一步认识分数应用题的基本结构和相应的解题规律,更好地掌握分数应用题的解题思路与方法,能正确解答基本的分数乘除法应用题。
2、进一步培养学生分析、推理的能力和解答分数应用题的能力。
教学重难点
进一步培养学生分析、推理的能力和解答分数应用题的能力。
教学准备
教学过程设计
教学内容
师生活动
备注
一、 基本训练
二、基本题练习
三、综合练习
四、课堂
五、作业
1、口算
做练习十的12题
2、揭示课题
我们已经学习了基本的分数乘、除应用题,这节课我们将重点解答分数乘除应用题。
3、基本训练
(1)问:解答分数应用题一般是怎样想的`?
(2)说单位“1”和数量关系式。(题目见幻灯)
指出:确定了单位“1”和数量关系式就可以根据数量关系来解答分数应用题了。
1、做练习十13题
问:数量关系是怎样的?该两题的三个数量有什么相同点和不同点?解题时有什么相同点和不同点?
2、做练习十第15题
学生独立写出数量关系式并解答。
强调:,单位“1”已知的类型直接用乘法解答,单位“1”未知的类型一般用方程解答。
3、补充应用题
(1)先说出哪个数量是单位“1”,再说出数量关系式。
苹果数棵数是果树棵数的1/5
(2)根据上面的条件,补充一个条件和问题
使得它成为用乘法解答的应用题
使得它成为用方程解答的应用题
1、做练习十16题
问:这两个问题在解法上有什么相同点和不同点?列式有什么不同?为什么不同?
指出:求一个数是另一个数的几倍,和求一个数是另一个数的几分之几用除法计算。解答时要把单位“1”的数量当除数。
这节课练习了什么内容?你进一步了解了哪些知识?
练习十14题
课后感受
通过这节课的学习,学生们进一步了解了求一个数是另一个数的几分之几和几倍的问题也能归为单位“1”求。
六年级数学比的教案篇4
教学内容
教科书第27页的第4~5题,练习六的第4~6题.
教学目的
1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.
2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.
3.通过一题多解,培养学生思维的变通性和灵活性.
教具、学具准备
自制多媒体课件.
教学过程
一、揭示课题
今天我们复习用比例的知识解答应用题.
二、回忆
用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:
(1)判断.概括出题中两种有关联的量,找出题中隐蔽的定量,从而确定两种相关联的量成什么比例.
(2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.
(3)解方程.
(4)验算.
(5)答题.
三、分层练习
1.基本练习.
(1)判断下面每题中的.两种量成什么比例.
①速度一定,所行的路程和时间.
②一本书的总字数一定,每行的字数与行数.
③苹果的单价一定,购买的数量和总价.
④工作总量一定,工作效率和魇奔洌?/p>
(2)实际运用.
①晶晶借了一本112页的《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?
学生独立练习后,小组内交流思考的过程,教师巡视指导.
③蚯蚓能消化许多垃圾,有人将7.5吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?
学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.
2.综合练习.
(1)一篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的版式,那么这篇文章需打印多少行?共需几页纸?
提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.
解:设需打印x行.
30×96=32x
x=90
90÷35=2(页)……20(行)
答:这篇文章需打印90行,共需3页纸.
(2)扬扬骑车从家经过游乐场到少年宫,全程需1.5小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?
学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.
可能出现的答案有:
(1)解:设从家直接到少年宫,要x小时. (2)解:设可以省x小时.
(11+7)∶1.5=15∶x (11+7)∶1.5=15∶(1.5-x)
18x=1.5×15 或 (11+7)∶1.5=(11+7-15)∶x
18x=22.5 解答过程略.
x=1.25
1.5-1.25=0.25(小时)
答:可以省0.25小时.
3.发展练习.
六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.
第一小队 10本 ( )元
第二小队 12本 ( )元
第三小队 11本 ( )元
学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.
可能的方法有:
方法一:792÷(10+12+11)=24(元) 方法二:792×10/33=240(元)
24×10=240(元) 792×12/33=288(元)
24×12=288(元) 792×11/33=264(元)
24×11=264(元) 答(略).
答(略).
方法三:解:设第一小队应交x元.
792∶(10+12+11)=x∶10
x=240
答(略).
六年级数学比的教案篇5
教学目标:
1.能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
2.引导学生通过实际操作、画图、计算等方法探索新知。
3.在解决问题的过程中体会比与现实生活的密切联系。
4.在交流算法的过程中体会解决问题策略的多样性。
重点难点:
1.能运用比的意义解决按照一定的比进行分配的实际问题。
2.引导学生通过操作、讨论和交流探索新知
教学方法:
操作
小组合作交流
自主探究
教学过程:
一、组织教学。
1、复习
师:同学们,今天与我们平时上课有什么不同?
紧张吗?(有的说紧张有的说不紧张)
咱们来统计一下,紧张的同学请举手,(生举手)
师数一数,并记录其数据(紧张的有15人,不紧张的有20人)。
你能根据这15人和20人用比的知识或分数的知识说一句话吗?
生可能会有以下几种说法:
(1)紧张的人数与不紧张的人数比是3:4;
(2)紧张的人数是不紧张的人数的3/4;
(3)紧张的人数与全班总人数的比是3:7;
(4)紧张的人数是全班总人数的3/7;
(5)紧张的人数比不紧张的人少1/4;
2、引入课题
师:大家说的真好,可见数学在我们的生活中随处可见,以前我们体验过分数在生活中的应用,今天我们再来体会一下比在我们生活中的应用价值。板书课题:比的应用。
二、探索新知
(一)解决问题一:怎样分合理?
1.提出问题。
师:其实只要有心,随时都可以发现一些数学问题,今天,我们的好朋友笑笑就遇到了一些问题,我们一起来看看她遇到了什么问题。(多媒体出示教学情境图。)
师:根据这幅情境图,你能获得哪些信息?
指名回答,引导学生找出图中所提供的信息,明确所提出的问题:把这些橘子分给一班和二班,怎样分合理?
学生独立思考
2.组织讨论。
让学生先在小组内进行讨论。然后,教师组织学生进行全班交流。
全班交流时,学生可能会提供以下两种分配方案。
方案一:每个班分这筐橘子的一半。
方案二:按一班和二班的人数比来进行分配。
启发学生明确:平均分就是按1:1的比例来分的;在实际生活中有时并不是把一个量平均分,而是要按不同的份量(一定的比例)来进行分配,像这样把一个量按一定的比例进行分配,就叫按比例分配。
师:这节课,我们来学习怎样解决按一定的比进行分配的实际问题。板书:按比例分配
(二)解决问题二:怎样分才是按3:2的比例来分的?
1、提出问题。
师:我们帮笑笑想出了分配的方法,笑笑又问:怎样分才是按3:2的比例来分的呢?
2、操作感知。
让学生用小棒代替橘子,4人—组分一分。[教师给每组相同数量的小棒,但没有告诉学生小棒的根数。(小棒的根数是5的倍数)学生按3:2分小棒,教师巡视,及时了解学生中典型的分法]
3、让学生说一说分的过程中的发现和自己的体会。
学生可能会说出不同的发现,
①发现6:4,9:6、15:10、30:20……的结果都是3:2。
②发现无论怎么分都是按3:2分。
(三)解决问题三:如果有140个橘子,按3:2该怎么分?
1、提出问题。
师:现在有140个橘子,按3:2又应该怎么分?
2、小组讨论。
让学生针对问题把自己的想法在小组内说一说,
教师巡视时,从中了解学生中典型的想法和做法。
3、全班交流。
指名汇报,学生可能会提供以下三种不同的.方法。
方法1:通过实际操作解决问题。如下表所示:
一班
二班
30个
20个
30个
20个
方法2:用画图的方法解决问题,如下图所示:
140个
3+2=5?
28×3=84(个)
140÷5=28?
28×2=56(个)
(答略)
方法3:根据分数的意义解决问题,
思考过程如下:
先求分的总份数:3+2=5
因为:一班分5份中的3份,即分到140个的3/5。
二班分到5份中的2份,即分到140个的2/5。
所以:一班分的个数是140×3/5=84(个)
二班分的个数是140×2/5=56(个)
方法4:方程
解设每一份有x个橘子,则一班分3x个,二班分2x个,根据:3份(3x)+2份(2x)=140列出方程:3x
+
2x
=
140并解出方程x=28,一班分3×28
=
84(个),二班分2×28
=
56(个)。
让学生说一说以上三种方法的相同点和不同点
4、引导检验
生思考,小组交流检验方法。
5、小结:
师:说的真好!我们今天遇到的问题是按一定的比例进行分配的问题,请你们思考:
a这类问题有什么特点?
b解决这类问题的方法是什么?
c解决这类问题的关键是什么?
三、巩固练习
指导学生完成教材第75~76页中“练一练”的第1、7、8题。
四、课堂小结
师:通过这节课,你有什么收获和体会与大家分享?
还有什么疑问要和大家商讨商讨?
六、布置作业
课本第75页练一练的第二题和课本76页的第6题。
教学反思:
本节课在谈话中引出问题复习旧知,为新授做铺垫,同时也让学生切身实地的感受到数学就在我们身边,从而很自然地引出课题。
整节课紧紧围绕三个问题展开,共分两大部分:一、分一分:创设情境,鼓励学生通过操作,在交流不同分法的过程中体会1:1分配的不合理性,产生按比分配的必要性,同时体会按比分配在生活中的实际应用;二、算一算:再有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解决问题的策略解决实际问题。
由于按比分配在生活中的运用很广泛,所以在练习的设计上,主要通过有层次、有坡度的一组问题,让学生用今天所学的知识来解决这些生活上的问题。
存在问题:由于学生个体差异较大,教学在短暂的课堂要面对全体学生,还有个别学生不能顺利准确的解决问题,造成教学效果的不足。为了提高教学效果,加强学生全面发展,在课余时间进行个别辅导,做到有的放矢,因材施教,在课堂上关注学困生,培养学习兴趣从而提高教学效果。
六年级数学比的教案篇6
当a、b表示两个量时,a÷b又叫做a与b的比,记作a∶b,读作“a比b”。其中a、b分别叫做比的前项和后项,它们的商叫做比值。比值是一个相对数。
两个量的比,分为同类量的比与不同类量的比。
一、同类量的比
同类量的比的比值,是一种抽象化的数值(无名数),它是将比的基数(后项)抽象为1而计算出来的。
例1圆周率
圆的周长∶圆的直径=圆周率。圆周率就是两个同类量的比值。我国南北朝时期著名的数学家祖冲之算出圆周率的值在3.1415926和3.1415927之间,并且得到了圆周率的两个分数形式的近似值:约率为,密率为。这一成就在世界上领先了1000年。
通过圆周率可以表明圆的内部结构与比例关系,从而深刻地提示了圆的本质特征。发现了圆周率,进而能推导出圆的周长和面积公式。
例2按比分配
一座水库按2∶3放养鲢鱼和鲤鱼,一共可以放养鱼苗25000尾。其中鲢鱼和鲤鱼的鱼苗各应放养多少尾?
这是一个按比分配的实际问题。2∶3这个比表明水库里所放养的鱼种结构与比例关系。
线段图:
解法1:2+3=5,
25000÷5=5000,
5000×2=10000,
5000×3=15000。
答:应放养鲢鱼10000尾,鲤鱼15000尾。
解法1:设水库放养的鲢鱼2x尾,鲤鱼3x尾。
2x+3x=25000,
5x=25000,
x=5000。
2x=10000,3x=15000。
答:(略)
解法2:2∶3=∶,且+=1,
25000×=10000,
25000×=15000。
答:(略)
例3比例尺
比例尺为1∶6000000的地图上,北京与天津的距离大约是4.5厘米,北京与天津的实际距离大约有多少千米?
图上距离与实际距离的比,叫做比例尺。
解:4.5×6000000=27000000(厘米)
=270(千米)
答:北京与天津的距离大约有270千米。
例4恩格尔系数
19世纪德国统计学家恩格尔根据统计资料,对消费结构的变化得出一个规律:一个家庭收入越少,家庭收入中(或总支出中)用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中(或总支出中)用来购买食物的支出则会下降。推而广之,一个国家越穷,每个国民的平均收入中(或平均支出中)用于购买食物的支出所占比例就越大,随着国家的富裕,这个比例呈下降趋势。
恩格尔系数是根据恩格尔定律得出的比例数,是表示生活水平高低的一个指标。其计算公式如下:
恩格尔系数=
除食物支出外,衣着、住房、日用必需品等的支出,也同样在不断增长的家庭收入或总支出中,所占比重上升一段时期后,呈递减趋势。
恩格尔系数是国际上通用的衡量居民生活水平高低的.一项重要指标,一般随居民家庭收入和生活水平的提高而下降。改革开放以来,我国城镇和农村居民家庭恩格尔系数已由1978年的57.5%和67.7%分别下降到20xx年的36.7%和45.5%。
国际上常常用恩格尔系数来衡量一个国家和地区人民生活水平的状况。根据联合国粮农组织提出的标准,恩格尔系数在59%以上为贫困,50-59%为温饱,40-50%为小康,30-40%为富裕,低于30%为最富裕。
恩格尔系数是用百分数表示特定的比值,所以百分数也叫百分比。
二、不同类量的比
不同类量的比的比值,也是一种相对数,但它是个名数。它是将相对数中的分子与分母的计量单位同时并列,以表明事物的强度、密度、普遍程度等。例如,人口密度用“人/平方公里”表示;每人平均粮食产量用“公斤/人”表示;每人平均国民生产总值用“元/人”表示;速度用“千米/时”表示;单价用“元/千克”表示等。
相对数不论是名数还是不名数,都有一个重要功能,即可以利用那些总量指标不能直接对比的现象,找到可比的基础,从而揭示事物之间的差别程度。
例5速度
马拉松选手2时约跑40千米,骑车者3时行45千米。两者谁的速度快?
比较速度有两种图式,一是比单位时间所走的路程,二是比单位路程所花的时间,于是有下面两种解法。
解法1:
40︰2=20︰1=20(千米/时),
45︰3=15︰1=15(千米/时)。
答:马拉松选手的速度比骑车者快。
解法2:
2︰40=1︰20=(时/千米),
3︰45=1︰15=(千米/时)。
答:(略)
一般地,路程与时间的比值,叫做速度。即
=速度。
路程一定时,时间花得越少,速度就越快;时间花得越多,速度就越慢。
例6gdp能耗
gdp即国内生产总值。国内标准煤消耗总量与国内生产总值的比值,叫做gdp能耗(吨/万元)。
我国到第十一个五年计划末每万元gdp能耗为2吨标准煤左右。那么每亿元gdp能耗大约为多少吨标准煤?
解:设每亿吨gdp能耗为x吨标准煤。
=2
x=20000(吨)=2(万吨)。
答:每亿元gdp能耗大约为2万吨标准煤。
例7空气的清新度
空气中含有带负电荷的肉眼看不见的微粒子,叫负离子。负离子也被称为“空气中的维生素”。空气中负离子的个数与空气的体积(cm3)的比值,叫做负离子浓度(个/cm3)。即=负离子浓度。
负离子浓度是比较空气清新程度的根据:
负离子浓度
等级
描述
>20xx
一级
非常清新
1500-20xx
二级
清新
1000-1500
三级
较清新
500-1000
四级
一般
≤500
五级
不清新
负离子发现与应用是人类在十九世纪的事,第一个国际学术会上证明负离子对人体有功效的是德国物理学家菲利浦莱昂纳博士,他认为地球自然环境对人类健康有益的负离子最多的地方是瀑布周围。
例8密度
叙拉古的亥厄洛王命令金匠制造一顶纯金的皇冠。,皇冠制好后,他怀疑里面掺有银子,便请阿基米德鉴定一下。
金、银这种组成物体的材料叫做物质,物体中含有物质的多少,叫做质量。
某种物质的质量和其体积的比值,即单位体积的某种物质的质量,叫做这种物质的密度(克/cm3或千克/m3)。
=密度。
密度是比较物质轻重的标准。金的密度是19.32克/cm3,银的密度是10.53克/cm3,金比银重得多。
为了鉴定皇冠里是否掺了银子,阿基米德要想办法检验皇冠的密度是否等于金的密度。解决这个问题需要测量出皇冠的体积,但如何测量形状不规则的皇冠体积呢?阿基米德一直解决不了这个难题。
有一天,阿基米德跨进浴盆洗澡时,看见水溢出盆外,于是从中受到启发:可以通过排出去的水的体积确定皇冠的体积。他测定的结果表明皇冠的密度比金的密度小,因此断定皇冠被掺进了银子。
会计实习心得体会最新模板相关文章: